首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   92篇
  国内免费   19篇
工业技术   1921篇
  2024年   4篇
  2023年   34篇
  2022年   80篇
  2021年   114篇
  2020年   90篇
  2019年   119篇
  2018年   166篇
  2017年   118篇
  2016年   112篇
  2015年   71篇
  2014年   103篇
  2013年   207篇
  2012年   109篇
  2011年   118篇
  2010年   85篇
  2009年   89篇
  2008年   47篇
  2007年   37篇
  2006年   29篇
  2005年   19篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   9篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有1921条查询结果,搜索用时 15 毫秒
41.
This paper presents a comparative study for the weakly compressible (WCSPH) and incompressible (ISPH) smoothed particle hydrodynamics methods by providing numerical solutions for fluid flows over an airfoil and a square obstacle. Improved WCSPH and ISPH techniques are used to solve these two bluff body flow problems. It is shown that both approaches can handle complex geometries using the multiple boundary tangents (MBT) method, and eliminate particle clustering‐induced instabilities with the implementation of a particle fracture repair procedure as well as the corrected SPH discretization scheme. WCSPH and ISPH simulation results are compared and validated with those of a finite element method (FEM). The quantitative comparisons of WCSPH, ISPH and FEM results in terms of Strouhal number for the square obstacle test case, and the pressure envelope, surface traction forces, and velocity gradients on the airfoil boundaries as well as the lift and drag values for the airfoil geometry indicate that the WCSPH method with the suggested implementation produces numerical results as accurate and reliable as those of the ISPH and FEM methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
42.
43.
Clear poly(methyl-methacrylate)—PMMA—dosimeter is widely used in food irradiations. Positron annihilation lifetime spectroscopy (PALS) is one of the unique tools used for studying free-volumes and open-volume type defects in solid media. The Vicker's microhardness measurements offer a simple and nondestructive tool for investigating the mechanical behavior of polymer materials. PALS as well as microhardness measurements were carried out for PMMA samples, irradiated with low- and high-linear energy transfers (LET). The low-LET irradiations were provided at lethal doses of gamma radiations for vegetative bacteria. Such irradiations showed a chain scission in the PMMA samples. High-LET irradiations showed behavior different from the low-LET ones. The observed behavior depends on the alpha particle fluence. The microhardness testing was carried out for virgin and irradiated PMMA samples at high-LET. A negative correlation was found between PALS measurements and microhardness results. The optical characteristics and structural studies for the virgin and irradiated PMMA samples were in agreement with the PALS and microhardness measurements. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
44.
Polyethylene terephthalate (PET) nanocomposite films were prepared by cast extrusion followed by uniaxial stretching, using chill rolls. Transmission electron microscopy (TEM) and wide angle X‐ray diffraction (WAXD) showed that the clay layers were aligned in the machine direction (MD) in the PET/clay nanocomposite (PCN) films. Differential scanning calorimetry (DSC) showed that PCN films have higher crystallinity than the neat PET films, possibly due to the nucleating role of the silicate layers. The PCN films became hazier as the clay content increased, but the film transparency remained in the acceptable range. Oxygen permeability of the PCN films decreased by 23% compared to the neat PET film. This is comparable with predictions of models proposed in the literature. Silicate incorporation brought about 20% increase in the tensile modulus, while the puncture and tear propagation resistance were reduced, due to brittleness of the PCN films. The measured modulus (1.7 GPa) was somewhat smaller than the values predicted using the Pseudoinclusion model (2.1 GPa). POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   
45.
Closed‐loop transmit diversity is considered an important technique for improving the link budget in the third generation and future wireless communication standards. This paper proposes several transmit diversity algorithms suitable for small wireless terminals and presents performance assessment in terms of average signal‐to‐noise ratio (SNR) and outage improvement, convergence, and complexity of operations. The algorithms presented herein are verified using data from measured indoor channels with variable antenna spacing and the results explained using measured radiation patterns for a two‐element array. It is shown that for a two‐element array, the best among the proposed techniques provides SNR improvement of about 3 dB in a tightly spaced array (inter‐element spacing of 0.1 wavelength at 2 GHz) typical of small wireless devices. Additionally, these techniques are shown to perform significantly better than a single antenna device in an indoor channel considering realistic values of latency and propagation errors.  相似文献   
46.
A new lead complex, [Pb(mq)2], (mq = 2-methyl-8-hydroxyquinoline) was prepared via an electrochemical route from the oxidation of lead metal in the presence of 2-methyl-8-hydroxyquinoline in a fast and facile process. The complex was fully characterized by means of NMR and IR spectra and elemental analysis. The nanostructure of the prepared compound was obtained by sonoelectrochemical process and studied by scanning electron microscopy, atomic force microscopy, X-ray powder diffraction, IR spectroscopy and elemental analysis. Thermal stability of single crystalline and nanosize samples of the prepared compound was studied by thermal gravimetric and differential thermal analysis. The photoluminescence properties of the prepared compounds, as single crystals and as nanorods, have been investigated. The results showed a good correlation between the size and the shape of the complex particles and emission wavelength. The prepared complex was doped in PVK:PBD blend as guest and its application in the fabrication of OLED was studied. The ratio of lead complex was modified and was equal to 8 (w/w %) in PVK:PBD (100:40).  相似文献   
47.
Blast furnace slags (BFS) is a secondary byproduct of iron industry, which has a combination of acidic and basic oxides and show a complex, multiphase structure. If appropriately tailored, BFS could be an effective functional filler, improving the property profile of thermoplastics such as polypropylene (PP) and polystyrene (PS). As a raw material, the proposed filler may introduce both economic and ecological advantages, as it is considered an inexpensive secondary product rather than a natural resource. The current study aims at investigating the effect of incorporating BFS as a micro‐sized filler on the rheological, thermal, and mechanical behavior of PP and PS. BFS types in this study are air‐cooled, crystalline, and amorphous, grounded types. Both types are ground into 71, 40, and 20 μm batches and introduced in 10, 20, and 30 weight fractions via melt kneading. Mixtures are then formed into 4‐mm and 2‐mm thick plates via compression molding. Slight increase in rheological factors is observed with increasing filler loading. BFS hinders the crystallization of PP, resulting in slight increase of crystallization temperatures (Tc) and lowering of crystallization enthalpy (ΔHc). No significant effect of filler on transition temperatures (Tg) is reported. Mechanically, BFS increases the tensile modulus of PP, but decreases its strength. For PS formulations, a modest toughening effect is observed by slag filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43021.  相似文献   
48.
Poly(l-lactic acid) (PLLA)/graphene nanoplatelets (GnP) nanocomposites were prepared through solvent casting and coagulation methods. The better dispersion of graphene was achieved by ultrasounds and its effect on crystallinity, thermomechanical and electrical properties of PLLA were studied and compared in both methods. Differential scanning calorimetry (DSC) was used to investigate the crystallinity of PLLA and its composites. Field emission gun scanning electron microscope (FEG-SEM) and wide-angle X-ray scattering (WAXS) were employed to characterize the microstructure of PLLA crystallites. Dynamic mechanical thermal analysis (DMTA) was performed to study the thermomechanical properties of the nanocomposites. FEG-SEM images illustrated finer dispersion of GnP in samples obtained by coagulation method with respect to solvent casting method. Graphene imparted higher electrical conductivity to nanocomposites obtained by solvent casting under ultrasound due to better formation of graphene network. DSC thermograms and their resulting data showed positive effects of GnP on crystallization kinetics of PLLA in both methods enhanced by the nucleating effect of graphene particles. Meanwhile, the effect of GnP, as nucleating agent, was more prominent in samples produced by coagulation method without utilization of ultrasounds. WAXS patterns represented the same characteristic peaks of PLLA in nanocomposite specimens suggesting similar crystalline structure of PLLA in presence of graphene, and the intensified peaks of nanocomposites compared to neat PLLA confirmed the DSC results regarding its improved crystallinity. Graphene increased storage modulus in rubbery region and glass transition temperature of nanocomposites in the coagulation method due to restricted mobility of PLLA chains.  相似文献   
49.
Pactamycin is a bacteria‐derived aminocyclitol antibiotic with a wide‐range of biological activity. Its chemical structure and potent biological activities have made it an interesting lead compound for drug discovery and development. Despite its unusual chemical structure, many aspects of its formation in nature remain elusive. Using a combination of genetic inactivation and metabolic analysis, we investigated the tailoring processes of pactamycin biosynthesis in Streptomyces pactum. The results provide insights into the sequence of events during the tailoring steps of pactamycin biosynthesis and explain the unusual production of various pactamycin analogues by S. pactum mutants. We also identified two new pactamycin analogues that have better selectivity indexes than pactamycin against malarial parasites.  相似文献   
50.
The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号