首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   10篇
  国内免费   5篇
工业技术   579篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   9篇
  2018年   6篇
  2017年   11篇
  2016年   10篇
  2015年   5篇
  2014年   11篇
  2013年   28篇
  2012年   26篇
  2011年   27篇
  2010年   18篇
  2009年   14篇
  2008年   23篇
  2007年   16篇
  2006年   26篇
  2005年   22篇
  2004年   12篇
  2003年   22篇
  2002年   20篇
  2001年   8篇
  2000年   17篇
  1999年   16篇
  1998年   31篇
  1997年   22篇
  1996年   17篇
  1995年   10篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1969年   1篇
  1968年   2篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
91.
A method for fabricating epoxy resin films dispersing the surface‐modified barium titanate (BT) particles (BT‐epoxy resin composite films) are proposed. BT particles with a size of 7.8 nm and a crystal size of 8.6 nm were synthesized with a complex alkoxide method. To introduce epoxy groups on the BT particle surface, the BT particles were surface‐modified with 2‐(3,4‐epoxycyclohexyl)‐ethyltrimethoxysilane. A precursor solution, which was prepared by prereacting 2,2‐bis(4‐glycidyloxyphenyl)propane (BGPP) and phthalic anhydride in 4‐butyrolactone and adding the surface‐modified BT particles to the prereacting solution, was spin‐coated on glass substrates to fabricate the composite films. An increase in BT volume fraction in film increased dielectric constant of the composite film while keeping dissipation factor below 0.03. The dielectric constant attained 10.8 at a BT volume fraction of 30% in film that was around twice higher than pure epoxy resin film. POLYM. COMPOS., 31:1179–1183, 2010. © 2009 Society of Plastics Engineers  相似文献   
92.
In this study, the influence of the fluidized bed height on the float–sink of different sized spheres in a gas–solid fluidized bed was investigated. Fluidized beds with heights h = 200, 150, 100 and 50 mm were prepared using a cylindrical column of inner diameter = 290 mm and a mixture of zircon sand and iron powder as the fluidized medium. Float–sink experiments were carried out using density adjusted spheres of diameter Dsp = 40, 30, 20 and 10 mm. It was found that the float–sink performance at Dsp ?20 mm is not affected by the height of the bed, and the sharpness of separation (the density range where spheres neither float nor sink completely) is less than or equal to 200 kg/m3. In the case of Dsp = 10 mm, the sharpness of separation is a larger value (1100 kg/m3 at h = 200 mm), whereas it decreases with decreasing h and is 400 kg/m3 at h = 50 mm. The fluctuation of the surface height of the fluidized bed was visually recorded. The fluctuation is reduced by reducing h. The fluctuation vs. h correlates with the sharpness of separation at Dsp = 10 mm vs. h. These results indicate that the dry float–sink separation of smaller sized spheres is improved as the fluctuation of fluidized bed surface is decreased by reducing the fluidized bed height.  相似文献   
93.
Capacitance distribution of {(Ni(0.6)Nb(0.4)(1-x)Zrx}(100-y)-Hy (x = 0.30, 0.35, 0.40, 0.45 and 0.50, 0 < or = y < or = 20) glassy alloy ribbons was carried out by ac impedance analysis at frequency of 1 kHz, in terms of a distributed constant equivalent circuit. The capacitance can be represented by oblique contour lines. The highest capacitance (1-11 microF) could be found near the point when x = 0.40, y = 10, which is a composition occurring room-temperature Coulomb oscillation, while capacitance of the composition (x = 0.35, y = 4) occurring ballistic transport was around 0.8 microF. The capacitance difference would be explained by an effect of hydrogen localization derived from morphology of distorted Zr-centered icosahedral Zr5Ni5Nb3 clusters and ideal Ni-centered clusters. The electrocapillarity equation showed that the specific capacitance between two electrodes increases parabolic with decreasing the distance, as a polarized glutinous liquid.  相似文献   
94.
Silicon carbide (SiC)-particle-dispersed-aluminum (Al) matrix composites were fabricated in a unique fabrication method, where the powder mixture of SiC, pure Al and Al–5mass% Si alloy was uniquely designed to form continuous solid–liquid co-existent state during spark plasma sintering (SPS) process. Composites fabricated in such a way can be well consolidated by heating during SPS processing in a temperature range between 798 K and 876 K for a heating duration of 1.56 ks. Microstructures of the composites thus fabricated were examined by scanning electron microscopy and no reaction was detected at the interface between the SiC particle and the Al matrix. The relative packing density of the Al–matrix composite containing SiC was higher than 99% in a volume fraction range of SiC between 40% and 55%. Thermal conductivity of the composite increased with increasing the SiC content in the composite at a SiC fraction range between 40 vol.% and 50 vol.%. The highest thermal conductivity was obtained for Al–50 vol.% SiC composite and reached 252 W/mK. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the SiC particle and the Al matrix in the composite.  相似文献   
95.
Unitary operations acting on a quantum system must be robust against systematic errors in control parameters for reliable quantum computing. Composite pulse technique in nuclear magnetic resonance realizes such a robust operation by employing a sequence of possibly poor-quality pulses. In this study, we demonstrate that two kinds of composite pulses-one compensates for a pulse length error in a one-qubit system and the other compensates for a J-coupling error in a two-qubit system-have a vanishing dynamical phase and thereby can be seen as geometric quantum gates, which implement unitary gates by the holonomy associated with dynamics of cyclic vectors defined in the text.  相似文献   
96.
Nondestructive evaluation of cyclic-tension fatigue in a rolled magnesium alloy, Mg-3Al-1Zn, was performed using vertically polarized shear wave (SV) reflection and shear horizontal wave (SH) transmission methods. Internal friction measured by SV reflection increased rapidly in the early stages of the fatigue and finally saturated, showing dominating interactions of movable dislocations and twinning boundaries with the waves as acoustic nonlinearities. The propagation time and logarithmic damping ratio in the SH transmission method followed a repeated increase and subsequent sudden decrease pattern, and finally converged toward fatigue failure due to acoustoelasticity, which represents the interaction with residual stresses. The wave and phase data were determined using an optical microscope, a scanning electron microscope, a surface roughness tester, and X-ray diffraction. The results demonstrated that during the fatigue process, residual stress accumulated on the compressive side of the specimen, despite the applied cyclic-tension loading. Brittle cracks that originated in inclusions provided sudden relief from the residual stress.  相似文献   
97.
Japan Domestic Agency (JADA) carried out R&Ds activities to improve joining CFC monoblocks onto a CuCrZr cooling tube in PFUs to boost the success rate of joint and to confirm load carrying capability of the monoblock attachments to Steel Support Structure (SSS) against tensile force simulating electromagnetic load to pull PFUs from SSS. In joining the CFC monoblocks to the cooling tube, JADA has adopted brazing by using noble-metal-free filler with the following improvements; (1) metalizing joint surface of CFC using Ti-coating with accurate thickness controlling, (2) Changing buffer layer material from soft pure copper to Cu–W alloy. By using the present improved joint, JADA has manufactured three mock-ups with 5 CFC monoblocks and tested against repetitive high heat loads more than 20 MW/m2. All of CFC monoblocks of each mockup can survive the high heat loads throughout 1000 cycles with no degradation of heat removal capability. Regarding the load carrying capability of monoblock attachments to SSS, tensile experiments were carried out using the same geometries of CFC and tungsten monoblocks in PFUs and the results show that both geometries and joints meet the ITER requirements, that is, 3 kN and 8 kN, respectively.  相似文献   
98.
Among the international fusion solid breeder blanket community, there exists steady progress on the experimental, phenomenological, and numerical characterizations of the pebble bed effective thermo physical and mechanical properties, and of thermomechanic state of the bed under prototypical operating conditions. This paper summarizes recent achievements in pebble bed thermomechanics that were carried out by members of the IEA Fusion Nuclear Technology Subtask I Solid Breeding Blanket. A major goal is on developing predictive capability while identifying a pre-conditioned equilibrium stress state that would warrant pebble bed integrity during operations. The paper reviews and synthesizes existing computational modeling approaches for pebble bed thermomechanics prediction, and differentiating points of convergence/divergence among existing approaches. The progress toward modeling benchmark is also discussed. These advancements have led to a framework to help navigate future research.  相似文献   
99.
The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.  相似文献   
100.
Mesostructured calcium phosphate was synthesized by means of the combination of a soluble metal salt with an aqueous phenylphosphonic acid solution containing sodium dodecyl sulfate (SDS). Phenylphosphonic acid (PhP) was selected as the template to pattern the materials with pores generated by the formation of a lamellar calcium PhP phase. SDS was introduced to improve the thermal stability of the pore structure. The resulting materials were characterized by means of X-ray diffraction (XRD), small-angle X-ray diffraction (SAXS), electron microscopes and BJH gas absorption method. With the aid of SDS, calcium phosphate materials with the surface area and pore volume as 72 m2/g and 569 cm3/g, respectively, were successfully developed at the SDS:PhP molar ratio of 0.3:1. It was found that the addition of SDS could effectively improve the thermal stability of the pore structure. A possible mechanism was proposed to interpret the formation procedure and the improved thermal stability of the mesoporous structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号