首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   87篇
工业技术   835篇
  2024年   1篇
  2023年   40篇
  2022年   41篇
  2021年   78篇
  2020年   31篇
  2019年   36篇
  2018年   31篇
  2017年   36篇
  2016年   36篇
  2015年   50篇
  2014年   50篇
  2013年   49篇
  2012年   52篇
  2011年   70篇
  2010年   38篇
  2009年   41篇
  2008年   27篇
  2007年   21篇
  2006年   8篇
  2005年   14篇
  2004年   6篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   19篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1936年   1篇
排序方式: 共有835条查询结果,搜索用时 15 毫秒
91.
The phosphorous-based flame retardant additives poly(m-phenylene methylphosphonate) (PMP) and resorcinol bis(diphenyl phosphate) (RDP) are reacted with bisphenol F and aniline–based benzoxazine (BF-a). DSC, rheological analysis, FT-IR, and soxhlet extraction reveal the covalent incorporation of both FR additives—initiating phenols in PMP structure as well as free phenols generated via transesterification reaction in the case of RDP. In contrast to PMP, RDP elongates the processing window but decreases the thermo–mechanical properties. Both additives increase the resistance in reactions against small flames with solely a phosphorous loading of 0.3 wt%, resulting in a V-0 rating and an improvement in the OI value by up to 2% for RDP and 4% for PMP. Both FRs reduce the heat release rate but increase the smoke production and the smoke toxicity in the case of RDP.  相似文献   
92.
Polymersome-based biomimetic nanoreactors (PBNs) have generated great interest in nanomedicine and cell mimicry due to their robustness, tuneable chemistry, and broad applicability in biologically relevant fields. In this concept review, we mainly discuss the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport. PBNs that use environmental changes or external stimuli to adjust membrane permeability while maintaining structural integrity are highlighted. By encapsulating catalytic species, PBNs are able to convert inactive substrates into functional products in a controlled manner. In addition, special attention is paid to the use of PBNs as tailored artificial organelles with biomedical applications in vitro and in vivo, facilitating the fabrication of next-generation artificial organelles as therapeutic nanocompartments.  相似文献   
93.
Legionella pneumophila is the causative agent of Legionnaires’ disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.  相似文献   
94.
This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d -xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.  相似文献   
95.
Digital light processing (DLP) enables the fabrication of complex 3D structures based on a photopolymerizable resin usually containing a photo initiator and an UV or photo absorber. The resin and thus the final properties of the printed structures can be adjusted by adding fillers like bioceramic powders relevant for bone-regeneration applications. Herein, a water-based and biocompatible poly(ethylene glycol diacrylate) (PEGDA) resin containing the photo initiator lithium-phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) enables the production of 3D structures via DLP. The addition of calcium magnesium phosphate cement (CMPC) powder, acting as photo absorber, leads to higher accuracy of the final structures. After curing the printed construct in a diammonium–hydrogen phosphate (DAHP) bath for hardening, the resulting mechanical properties can be adjusted without post-process sintering. Solid loading of up to 40 wt% CMPC powder is possible, and the resins are investigated regarding their rheological behavior and printability. The resulting constructs are analyzed in respect to their surface morphology using scanning electron microscope (SEM), porosity, phase composition using X-ray diffraction (XRD) methods, as well as mechanical properties influenced by the hardening process using DAHP for different durations.  相似文献   
96.
In recent years, dual-cure chemistry has been exploited to realize interpenetrating networks (IPNs) that provide enhanced thermo-mechanical properties. In this contribution, photoinduced curing of (meth)acrylates is used to build the desired 3D structure, whereas the thermally triggered polymerization reaction of 2H-chromene functionalized building blocks is utilized to create the IPN. This strategy combines the advantages of traditional UV-curable monomers with high-performance thermosets. After the successful synthesis of the bispropargyl ether derivative, i.e., 4,4′-(propane-2,2-diyl)bis((ethynyloxy)benzene), its thermally induced conversion to the corresponding 2H chromene functionalized prepolymer is studied by Fourier-transform infrared spectroscopy and gel permeation chromatography. The network formation as well as the printability of various formulations containing different amounts of the thermo-curable building block is investigated. The obtained IPNs provide enhanced thermo-mechanical properties making these resins suitable for the additive manufacturing of functional 3D parts for high-performance applications.  相似文献   
97.
Despite multiple research approaches to prevent bacterial colonization on surfaces, device‐associated infections are currently responsible for about 50% of nosocomial infections in Europe and significantly increase health care costs, which demands development of advanced antibacterial surface coatings. Here, novel antimicrobial composite materials incorporating zinc oxide nanoparticles (ZnO NP) into biocompatible poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel layers are prepared by mixing the PNIPAAm prepolymer with ZnO NP, followed by spin‐coating and photocrosslinking. Scanning electron microscopy (SEM) characterization of the composite film morphology reveals a homogeneous distribution of the ZnO NP throughout the film for every applied NP/polymer ratio. The optical properties of the embedded NP are not affected by the matrix as confirmed by UV‐vis spectroscopy. The nanocomposite films exhibit bactericidal behavior towards Escherichia coli (E. coli) for a ZnO concentration as low as ≈0.74 μg cm?2 (1.33 mmol cm?3), which is determined by inductively coupled plasma optical emission spectrometry. In contrast, the coatings are found to be non‐cytotoxic towards a mammalian cell line (NIH/3T3) at bactericidal loadings of ZnO over an extended period of seven days. The differential toxicity of the ZnO/hydrogel nanocomposite thin films between bacterial and cellular species qualifies them as promising candidates for novel biomedical device coatings.  相似文献   
98.
The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin. Melanopsin is a promising optogenetic tool that functions as a selective molecular light switch for G protein-coupled receptor pathways. Thus, we constructed a model of the melanopsin Gq protein complex and predicted an absorption maximum shift of the Y211F variant. This variant displays a narrow blue-shifted action spectrum and twofold faster deactivation kinetics compared to wild-type melanopsin on G protein-coupled inward rectifying K+ (GIRK) channels in HEK293 cells. Furthermore, we verified the in vivo activity and optogenetic potential for the variant in mice. Thus, we propose that our developed concept will be generally applicable to designing optogenetic tools.  相似文献   
99.
Magnetic skyrmions are particle‐like deformations in a magnetic texture. They have great potential as information carriers in spintronic devices because of their interesting topological properties and favorable motion under spin currents. A new method of nucleating skyrmions at nanoscale defect sites, created in a controlled manner with focused ion beam irradiation, in polycrystalline magnetic multilayer samples with an interfacial Dzyaloshinskii–Moriya interaction, is reported. This new method has three notable advantages: 1) localization of nucleation; 2) stability over a larger range of external field strengths, including stability at zero field; and 3) existence of skyrmions in material systems where, prior to defect fabrication, skyrmions were not previously obtained by field cycling. Additionally, it is observed that the size of defect nucleated skyrmions is uninfluenced by the defect itself—provided that the artificial defects are controlled to be smaller than the inherent skyrmion size. All of these characteristics are expected to be useful toward the goal of realizing a skyrmion‐based spintronic device. This phenomenon is studied with a range of transmission electron microscopy techniques to probe quantitatively the magnetic behavior at the defects with applied field and correlate this with the structural impact of the defects.  相似文献   
100.
This paper proposes partial steam reforming of natural gas as a chemical storage option for excess electricity. Thermodynamic simulations with Aspen Plus® show that highest process efficiencies are reached at low steam-to-carbon (S/C) ratios in the feed. However, coke deposition due to unwanted side or follow-up reactions and thus catalyst deactivation is likely in this operation range. In an experimental evaluation three catalysts were selected to test their resistance towards coking: two nickel based and one rhodium based noble metal catalyst. They were tested regarding their long-term stability at S/C ratios as low as 0 to 0.1 and reaction temperatures between 450 and 500 °C. A different reaction and deactivation behavior was observed for nickel and the noble metal catalysts. The measured life times of the noble metal catalyst were by a factor of at least 100 higher than for the two selected nickel catalysts at the applied reforming conditions. Furthermore, after each reforming experiment, a temperature-programmed oxidation (TPO) analysis was performed for the spent catalysts. Based on literature data, the measured CO2 peaks at corresponding temperatures were related to the different forms of solid carbon depositions. Main carbonaceous species found on the nickel catalysts were of filamentous nature, whereas one or two more reactive C species with monoatomic or polymeric structure at much lower amount were detected on the noble metal catalyst. Further SEM analysis confirmed these findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号