首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   25篇
工业技术   452篇
  2024年   1篇
  2023年   9篇
  2022年   89篇
  2021年   96篇
  2020年   24篇
  2019年   19篇
  2018年   14篇
  2017年   11篇
  2016年   20篇
  2015年   13篇
  2014年   17篇
  2013年   15篇
  2012年   29篇
  2011年   13篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   11篇
  2000年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有452条查询结果,搜索用时 0 毫秒
61.
This Paper discusses the use of modern techniques to gather, convert and present the historic facts concerning the shape of the city—for an example of Warsaw. The aim of the project is to analyse chances of cooperative use of historic data base and contemporary software in intention to create virtual model of the old urban structure.

The deepest source of understanding the contemporary nature of the city is genuine consciousness of its history.

Author Keywords: City; History; Virtual; Urban; Town planning  相似文献   

62.
It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.  相似文献   
63.
In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.  相似文献   
64.
The composites based on polylactide (PLA) and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with the addition of antibacterial particles: silver (Ag) and copper oxide (CuO) are characterized. Basic mechanical properties and biodegradation processes, as well as biocompatibility of materials with human cells are determined. The addition of Ag or CuO to the polymers do not significantly affect their mechanical properties, flammability, or biodegradation rate. However, several differences between the base materials are observed. PLA‐based composites have higher tensile and impact strength values, while PHBV‐based ones have a higher modulus of elasticity, as well as better mechanical properties at elevated temperatures. Concerning biocompatibility, each of the tested materials support the growth of fibroblasts over time, although large differences are observed in the initial cell attachment. The analysis of hydrolytic degradation effects on the structure of materials shows that PHBV degrades much faster than PLA. The results of this study confirm the good potential of the investigated biodegradable polymer composites with antibacterial particles for future biomedical applications.  相似文献   
65.
Oligocarbonate diols due to their resistance to oxidation and hydrolysis are particularly valuable components of polyurethanes for biomedical applications. It was shown that for their synthesis “green monomer,” ethylene carbonate can be used in the reaction with 1,6‐hexanediol, instead of usually applied toxic and harmful phosgene. Depending on reaction conditions, besides ester exchange leading to the desired product, competitive etherification is often observed. To optimize the reaction conditions leading to oligocarbonates of high molecular weight without oxyethylene fragments, the method of an experimental design was applied. Such approach enabled the estimation of the influence of reaction temperature, ethylene carbonate to 1,6‐hexanediol molar ratio and catalyst (NaCl) concentration on the molar mass of oligocarbonate diol, content of ether bonds and reaction time. Application of central composite method as an experimental design allowed not only to choose the optimal set of conditions, but also the coefficients of the regression equation were interpreted in a chemical way. Oligocarbonate diols obtained under optimal conditions were used for synthesis poly(urethane‐urea)s which exhibited very good mechanical properties (tensile strength 45–50 MPa and elongation at break up to 500%). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
66.
Customized implants for bone replacement are a great help for a surgeon to remodel maxillofacial or craniofacial defects in an esthetical way, and to significantly reduce operation times. The hypothesis of this study was that a composite of β-tricalcium phosphate (β-TCP) and a bioactive glass similar to the 45S5 Henchglass® is suitable to manufacture customized implants via 3D-printing process. The composite was chosen because of the bioresorption properties of the β-TCP, its capability to react as bone cement, and because of the adjustability of the bioactive glass from inert to bioresorbable. Customized implants were manufactured using the 3D-printing technique. The four point bending strength of the printed specimens was 14.9 MPa after sintering. XRD analysis revealed the occurrence of two other phases, CaNaPO4 and CaSiO3, both biocompatible and with the potential of biodegradation. We conclude that it is possible to print tailored bone substitute implants using a bioactive TCP/glass composite. The glass is not involved as reactive substance in the printing process. This offers the opportunity to alter the glass composition and therefore to vary the composition of the implant.  相似文献   
67.
68.
Chemistry requires and combines both observable and mental representations. Still we know that learners often struggle in combining these perspectives successfully, especially when experimental observations contradict the model‐based explanations, e. g. in interpreting the chemical equilibrium as dynamic processes while observing a static system without any visible changes. Digital media offer potentials that might not have been accessible to this degree until now. However, we do not know enough with regard to the degree and effects these media tools have in supporting learning processes but perhaps also in hindering them. This article presents four approaches on how to potentially make use of digital media in learning processes based on theoretical considerations and empirical investigations. The projects will explore applications of media as visualization, learning and investigation tools in chemistry education, embracing techniques from virtual realities to eye‐tracking.  相似文献   
69.
The air composition and reactivity from outdoor and indoor mixing field campaign was conducted to investigate the impacts of natural ventilation (ie, window opening and closing) on indoor air quality. In this study, a thermal desorption aerosol gas chromatograph (TAG) obtained measurements of indoor particle‐ and gas‐phase semi‐ and intermediately volatile organic compounds both inside and outside a single‐family test home. Together with measurements from a suite of instruments, we use TAG data to evaluate changes in indoor particles and gases at three natural ventilation periods. Positive matrix factorization was performed on TAG and adsorbent tube data to explore five distinct chemical and physical processes occurring in the indoor environment. Outdoor‐to‐indoor transport is observed for sulfate, isoprene epoxydiols, polycyclic aromatic hydrocarbons, and heavy alkanes. Dilution of indoor species is observed for volatile, non‐reactive species including methylcyclohexane and decamethylcyclopentasiloxane. Window opening drives enhanced emissions of semi‐ and intermediately volatile species including TXIB, DEET, diethyl phthalate, and carvone from indoor surfaces. Formation via enhanced oxidation was observed for nonanal and 2‐decanone when outdoor oxidants entered the home. Finally, oxidative depletion of gas‐phase terpenes (eg, limonene and α‐pinene) was anticipated but not observed due to limited measurement resolution and dynamically changing conditions.  相似文献   
70.
Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号