首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   7篇
工业技术   217篇
  2023年   3篇
  2022年   12篇
  2021年   11篇
  2020年   6篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   8篇
  2015年   2篇
  2014年   8篇
  2013年   17篇
  2012年   17篇
  2011年   18篇
  2010年   13篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   9篇
  1997年   4篇
  1996年   9篇
  1995年   4篇
  1994年   3篇
  1991年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
91.
The process of hydrogen evolution during alkaline electrolysis of aqueous solutions is governed by mass transfer, growth of hydrogen bubbles and removal of hydrogen from the cathode. Two mechanisms are decisive for hydrogen removal: (i) hydrogen dissolved in the solution is carried off from the cathode surface by diffusion and convection, and (ii) gas bubbles are transported by a two- phase flow. The paper describes experiments to determine the local concentration of dissolved hydrogen and the void fraction of hydrogen bubbles in aqueous solutions. Measurements were performed in a flow channel by varying the height of the cathode (40–400mm), the current density (up to 6250Am–2) and the mean velocity of the electrolyte (up to 0.95 m s–1). Two operating regimes of the electrolyser are found. At high current densities a back flow is observed leading to an increase in the electrolyte resistance. Traces of dissolved oxygen are detected at high current densities. At low current densities the two-phase flow is confined to a thin layer along the cathode surface, the concentration of dissolved hydrogen being small.  相似文献   
92.
93.
This article analyzes the influence of graphite reinforcement, load, sliding speed, and sliding distance on tribological behavior of A356 aluminum matrix composites reinforced with silicon carbide and graphite using the full-factorial design. The wear rates of A356/10SiC composite material and A356/10SiC/1Gr and A356/10SiC/3Gr hybrid composites have been analyzed. The composites were obtained by a modified compocasting procedure. Tribological tests were performed on a block-on-disc tribometer without lubrication. The testing included sliding speeds of 0.25 and 1.0 m/s, normal loads of 10 and 20 N, and sliding distances of 300 and 900 m. The analysis of the obtained results was performed using the full-factorial method based on the signal-to-noise (S/N) ratio. The effects of load, sliding speed, weight percentage of graphite reinforcement, and sliding distance on the wear rate are 38.99, 17.87, 13.95, and 11.25%, respectively. The best tribological characteristics were exhibited by the A356/10SiC/1Gr hybrid aluminum composite.  相似文献   
94.
The animal olfactory system represents the gold standard of biosensors, due to its ability to identify and discriminate thousands of odorant compounds with very low thresholds. Using olfactory receptors (ORs) as sensing elements instead of chemical sensors, biosensors would benefit the naturally optimized molecular recognition of odorants to develop a new generation of bioelectronic noses. The purpose of SPOT-NOSED European project was the development of nanobiosensors based on single ORs anchored between nanoelectrodes, to mimic the performances of natural olfactory system. Nanobiosensors arrays could then increase odorant sensitivity or widen the odorant detection spectrum. ORs were expressed in yeasts plasmic membrane, and their functionality tested in whole yeasts. Then, nanosomes bearing the ORs were prepared from S. cerevisiae, and Surface Plasmon Resonance was performed on nanosomes for quantitative evaluation of OR response to odorant stimulation. ORs retain full activity and discrimination power in immobilized nanosomes, thus allowing their use in the fabrication of the nanobiosensors. Nanoelectrodes were fabricated using conventional photolithography and focused ion beam milling, with sizes in adequation with the nanosomes. ORs borne by nanosomes were specifically immobilized onto conducting substrates via mixed Self Assembled Monolayers, neutravidin and specific antibody to the ORs. The process was optimized by microcontact printing, and the anchored nanovesicles visualized by Atomic Force Microscopy. A transimpedance preamplifier suited for low-noise wide-bandwidth measurements was designed to be directly connected to the nanoelectrodes. Electrochemical Impedancemetric Spectroscopy detected significant changes upon electrodes functionalization, grafting of ORs carried by nanosomes, and ORs conformational change induced by odorant binding.  相似文献   
95.
96.
97.
Combined spectroscopic (UV/visible, Raman, MS) and theoretical approaches were used to assess interaction of iron(III) with quercetin and baicalein in aqueous buffered solutions. Obtained results implicated formation of two iron quercetin complexes, with pH-dependent stoichiometries of 1:2 and 1:1, and one iron baicalein complex with stoichiometry of 1:1. Results of vibrational analysis and theoretical calculations implicated 3-hydroxy-4-carbonyl and the 3′-hydroxy-4′-hydroxy group of catechol as chelating sites for quercetin. For baicalein 5-hydroxy-6-hydroxy group is energetically the most favourable, although 5-hydroxy-4-carbonyl and 6-hydroxy-7-hydroxy chelating sites are energetically similar. Antiradical activity, reaction stoichiometry and number of inactivated DPPH molecules per mole of antioxidant indicated quercetin as a better antioxidant than its iron complex, baicalein and iron baicalein complex. The same structural features appeared to be important both in complexation and antioxidant activity. The equilibrium geometries, optimised using the B3LYP/6-31G (d, p) level of theory, predicted structural modifications between the ligand molecules in free state and in the complex structures. Correlation between experimental and theoretical results was very good.  相似文献   
98.
Coronavirus disease (COVID-19) is an infectious disease caused by SARS-CoV-2. Elderly people, people with immunodeficiency, autoimmune and malignant diseases, as well as people with chronic diseases have a higher risk of developing more severe forms of the disease. Pregnant women and children can becomesick, although more often they are only the carriers of the virus. Recent studies have indicated that infants can also be infected by SARS-CoV-2 and develop a severe form of the disease with a fatal outcome. Acute Respiratory Distress Syndrome (ARDS) ina pregnant woman can affect the supply of oxygen to the fetus and initiate the mechanism of metabolic disorders of the fetus and newborn caused by asphyxia. The initial metabolic response of the newborn to the lack of oxygen in the tissues is the activation of anaerobic glycolysis in the tissues and an increase in the concentration of lactate and ketones. Lipid peroxidation, especially in nerve cells, is catalyzed by iron released from hemoglobin, transferrin and ferritin, whose release is induced by tissue acidosis and free oxygen radicals. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through various pathways, resulting in a decrease in the antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in the cells, ultimately leading to oxidative cell stress, and finally, death. Conclusion: damage to the mitochondria as a result of lipid peroxidation caused by the COVID-19 disease can cause the death of a newborn and pregnant women as well as short time and long-time sequelae.  相似文献   
99.
100.
Electrochemical polymerization of polyaniline (PANI) coating on copper electrode was performed galvanostatically in the current density range between 0.50 and 1.25 mA cm?2, from aqueous solution of 0.3 mol dm?3 sodium benzoate and 0.2 mol dm?3 aniline. The corrosion behavior of PANI coated copper and copper electrode exposed to 0.5 mol dm?3 sodium chloride solution was investigated by potentiodynamic and electrochemical impedance spectroscopy techniques. It was observed that thin PANI (5 μm) coating had provided efficient protection (~96%) to copper in 0.5 mol dm?3 sodium chloride solution. Unusual initial impedance behavior to that normally observed with conventional organic coatings was attributed to dedoping of benzoate anions from the polymer coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号