首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   71篇
  国内免费   1篇
工业技术   1288篇
  2024年   3篇
  2023年   29篇
  2022年   84篇
  2021年   103篇
  2020年   34篇
  2019年   40篇
  2018年   56篇
  2017年   46篇
  2016年   53篇
  2015年   45篇
  2014年   48篇
  2013年   68篇
  2012年   59篇
  2011年   86篇
  2010年   73篇
  2009年   49篇
  2008年   77篇
  2007年   64篇
  2006年   46篇
  2005年   24篇
  2004年   21篇
  2003年   26篇
  2002年   21篇
  2001年   13篇
  2000年   14篇
  1999年   12篇
  1998年   4篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   6篇
  1975年   3篇
  1974年   2篇
  1970年   2篇
  1966年   2篇
排序方式: 共有1288条查询结果,搜索用时 0 毫秒
991.
We report an experimental investigation of the ion energy distribution in an inductively coupled electron cyclotron wave resonance (ECWR) discharge with a superimposed static magnetic field. The inductively coupled discharge is sustained by applying a 13.56 MHz radiofrequency (RF) power to an aluminium single-turn coil located inside the vacuum chamber. The source region was separated by a grid from the diffusion region. Ion energy distribution (IEDF) measurements employing an energy-dispersive mass spectrometer or plasma process monitor (PPM) whose entrance opening was 15 cm away from the grid were performed in the diffusion region. The IEDF is composed of two peaks; a low-energy peak due thermalized ions and a high-energy peak due to ions coming directly from the source region without undergoing thermalization. The energetic difference between the groups thus reflects the plasma potential difference between the source region and the diffusion region. The pronounced intensity variation of the high-energy peak with increasing pressure is caused by charge-changing collisions yielding a depletion of the high-energy ions with increasing effective path length.  相似文献   
992.
A novel combination of internally heat‐integrated distillation column (HIDiC) and vapor recompression column (VRC) with intermediate reboiler (IR) is proposed. Supplying heat at the highest temperature point (i.e., column bottom) of the VRC scheme is not thermodynamically favorable and, therefore, we aim to install the IR for better distribution of heat along the column length, thereby reducing the compressor work. Introducing IR in the combined HIDiC‐VRC system formulates an open‐loop variable manipulation policy to evaluate the comparative impact of internal and external heat sources on bottom liquid reboiling. With internal energy driven bottom reboiler, we further investigate the hybrid HIDiC‐VRCIR column with proposing the two modes of compressor arrangement, namely parallel and series. Finally, a multicomponent distillation system is exampled to show the promising potential of the proposed HIDiC‐VRCIR configurations in improving the energetic and economic performance over the HIDiC‐alone and HIDiC‐VRC schemes with reference to a conventional standalone column. © 2014 American Institute of Chemical Engineers AIChE J, 61: 118–131, 2015  相似文献   
993.
Katira gum-graft-poly(N-vinyl imidazole) was synthesized in a water medium with potassium perdisulfate as the free-radical initiator at 70 ± 1 °C. The graft copolymer was sulfated by chlorosulfonic acid in the presence of pyridine and formamide. Various characterization techniques, including Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy, were used to characterize both the unsulfated and sulfated graft copolymers. The sulfated graft copolymer was used for the adsorption of Hg(II) ions from its aqueous solution. The operating variables affecting the Hg(II) adsorption, including the solution pH, amount of sulfated graft copolymer, contact time, and concentration of Hg(II), were investigated extensively. The sulfated graft copolymer was also used for competitive metal-ion removal with Pb(II), Cd(II), Cu(II), and Zn(II). Metal complexation was studied with FTIR spectroscopy, ultraviolet–visible (UV–vis) spectroscopy, and cyclic voltammetry analysis. The Hg(II) adsorption data of the sulfated graft copolymer were described well by the pseudo-second-order rate equation. The Langmuir adsorption isotherm provided the best correlation for the adsorption data. Various thermodynamic parameters for the adsorption were calculated. FTIR and UV–vis spectroscopy and cyclic voltammetry analysis before and after the adsorption of Hg(II) on the sulfated graft copolymer showed that columbic attraction was mainly responsible for the binding of the Hg(II) ions with the  groups present in the sulfated graft copolymer. The sulfated graft copolymer showed a better adsorption performance than the graft copolymer itself under optimized conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44565.  相似文献   
994.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   
995.
Polyurethane (PU) nanocomposites were prepared through conventional and in situ methods with multiwalled carbon nanotubes (MWNTs) functionalized with poly(ϵ-caprolactone). The thermal degradation and stability of PU–MWNT nanocomposites were investigated with nonisothermal thermogravimetry and were explained in terms of the interaction between MWNTs and PU molecules with Fourier transform infrared spectroscopy. The difference in thermal stability between the conventional and in situ nanocomposites was also compared. The thermal degradation of all the nanocomposite samples took place in two stages and followed a first-order reaction. The degradation temperature of the in situ nanocomposites was higher than that of the conventional nanocomposites with the same loading of MWNTs. The activation energy at 10% degradation and the half-life period were also higher in the in situ nanocomposites compared to the conventional nanocomposites. Such higher thermal stability of the in situ nanocomposites was ascribed to covalent bond formation between MWNTs and PU chains, which could result in better dispersion of MWNTs in the PU matrix for the in situ nanocomposites than for the conventional nanocomposites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
996.
Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A–D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.  相似文献   
997.
This determination of the mitochondrial effect of pharmacologically different antidepressants (agomelatine, ketamine and vortioxetine) was evaluated and quantified in vitro in pig brain-isolated mitochondria. We measured the activity of mitochondrial complexes, citrate synthase, malate dehydrogenase and monoamine oxidase, and the mitochondrial respiratory rate. Total hydrogen peroxide production and ATP production were assayed. The most potent inhibitor of all mitochondrial complexes and complex I-linked respiration was vortioxetine. Agomelatine and ketamine inhibited only complex IV activity. None of the drugs affected complex II-linked respiration, citrate synthase or malate dehydrogenase activity. Hydrogen peroxide production was mildly increased by agomelatine, which might contribute to increased oxidative damage and adverse effects at high drug concentrations. Vortioxetine significantly reduced hydrogen peroxide concentrations, which might suggest antioxidant mechanism activation. All tested antidepressants were partial MAO-A inhibitors, which might contribute to their antidepressant effect. We observed vortioxetine-induced MAO-B inhibition, which might be linked to decreased hydrogen peroxide formation and contribute to its procognitive and neuroprotective effects. Mitochondrial dysfunction could be linked to the adverse effects of vortioxetine, as vortioxetine is the most potent inhibitor of mitochondrial complexes and complex I-linked respiration. Clarifying the molecular interaction between drugs and mitochondria is important to fully understand their mechanism of action and the connection between their mechanisms and their therapeutic and/or adverse effects.  相似文献   
998.
999.
A correlation predicting the effectiveness of a two-step acid wash coal cleaning protocol using sequential leaching of mercury from the coal was developed and the effectiveness of the two-step wash procedure was then determined for two bituminous coals. Increasing the hydrochloric acid concentration and temperature in the USGS four stage sequential leaching protocol increased the amount of mercury leached during the HCl step. Using these revised conditions, sequential leaching was then shown to correspond to the mercury removals achieved in the two-step wash method. Mercury removal rates of 50-70% were realized for the bituminous coals by pre-treating the coal prior to a wash with hot concentrated HCl.  相似文献   
1000.
Multi-wall carbon nanotubes coated with polyaniline   总被引:3,自引:0,他引:3  
Multi-wall carbon nanotubes (CNT) were coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. The content of CNT in the samples was 0-80 wt%. Uniform coating of CNT with PANI was observed with both scanning and transmission electron microscopy. An improvement in the thermal stability of the PANI in the composites was found by thermogravimetric analysis. FTIR and Raman spectra illustrate the presence of PANI in the composites; no interaction between PANI and CNT could be proved. The conductivity of PANI-coated CNT has been compared with the conductivity of the corresponding mixtures of PANI and CNT. At high CNT contents, it is not important if the PANI coating is protonated or not; the conductivity is similar in both cases, and it is determined by the CNT. Polyaniline reduces the contact resistance between the individual nanotubes. A maximum conductivity of 25.4 S cm−1 has been found with PANI-coated CNT containing 70 wt% CNT. The wettability measurements show that CNT coated with protonated PANI are hydrophilic, the water contact angle being ∼40°, even at 60 wt% CNT in the composite. The specific surface area, determined by nitrogen adsorption, ranges from 20 m2 g−1 for protonated PANI to 56 m2 g−1 for neat CNT. The pore sizes and volumes have been determined by mercury porosimetry. The density measurements indicate that the compressed PANI-coated CNT are more compact compared with compressed mixtures of PANI and CNT. The relaxation and the growth of dimensions of the samples after the release of compression have been noted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号