首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143141篇
  免费   23223篇
  国内免费   4996篇
工业技术   171360篇
  2024年   327篇
  2023年   1531篇
  2022年   2671篇
  2021年   4332篇
  2020年   4324篇
  2019年   5593篇
  2018年   5872篇
  2017年   6381篇
  2016年   6674篇
  2015年   7674篇
  2014年   8761篇
  2013年   11130篇
  2012年   9499篇
  2011年   9551篇
  2010年   8983篇
  2009年   8533篇
  2008年   7894篇
  2007年   7466篇
  2006年   6943篇
  2005年   5896篇
  2004年   4951篇
  2003年   5195篇
  2002年   5953篇
  2001年   5160篇
  2000年   3819篇
  1999年   2929篇
  1998年   2689篇
  1997年   1963篇
  1996年   1589篇
  1995年   1279篇
  1994年   958篇
  1993年   839篇
  1992年   599篇
  1991年   473篇
  1990年   376篇
  1989年   295篇
  1988年   288篇
  1987年   190篇
  1986年   202篇
  1985年   198篇
  1984年   117篇
  1983年   107篇
  1982年   110篇
  1981年   119篇
  1980年   127篇
  1979年   80篇
  1978年   56篇
  1977年   112篇
  1976年   197篇
  1975年   58篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
The last decade has witnessed the convergence of three giant worlds:electronics,computer science and telecommunications.The next decade should follow this convergence in most of our activities with the generalization of sensor networks.In particular with the progress in medicine,people live longer and the aging of population will push the development of wireless person-  相似文献   
62.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
63.
64.
Cystoseira hakodatensis is an unutilised brown algae belonging to family Sargassaceae. A crude methanol extract from the algae showed inhibitory effects on the growths of Bacillus cereus and Bacillus licheniformis. To isolate the major antimicrobial agent, a sequential active‐guided isolation procedure was applied: liquid–liquid extraction, column chromatography and bio‐autography. A marked antimicrobial agent (active α) was isolated in hydrophobic fraction and was determined to phenolics without carbohydrates and proteins by phytochemical test. Regarding the antimicrobial potential, the isolated active α showed better inhibitory effects against B. cereus and B. licheniformis at 2 and 4 times of lower concentrations (62.5 and 31.3 μg mL?1) in comparison with epigallocatechin gallate. These results showed that C. hakodatensis is a potential source of antimicrobial agent capable of preventing the growth of the two bacteria.  相似文献   
65.
66.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
67.
Cattle access to streams has been linked globally with degradation of stream water quality, driven largely by bank erosion and resultant instream, fine sediment deposition. The majority of evidence on such effects is however based in arid and semiarid regions of the United States and Australia, with few studies relating to cool temperate climates such as Northwest Europe. In this study, “Quorer” resuspendable sediment samples were taken from riffle geomorphic units upstream (control) and at two points downstream (pressure and recovery) of cattle access points in headwater streams in agricultural catchments in Ireland to assess levels of deposited stream sediment. Samples were taken in April/May (2016) prior to the grazing season and in October (2016) at the end of the grazing season. Sites in good‐high ecological status catchments and less than good ecological status catchments were included in the study. Higher levels of sediment were found downstream of cattle access points in both good‐high status and less than good status catchments; however, the impacts of access points were spatially confined to, in most cases, the area immediately downstream of the point of access. There was a strong correlation between deposited sediment mass and organic matter (OM) mass, with levels of OM increasing linearly with deposited sediment mass. Levels of measured sediment were negatively correlated with riparian habitat health (measured using a qualitative habitat assessment). The results of this study highlight the need for measures to prevent cattle access to headwater streams where access points can be many in order to manage local habitat quality and downstream water quality issues.  相似文献   
68.
69.
Liu  Song  Cui  Yuan-Zhen  Zou  Nian-Jun  Zhu  Wen-Hao  Zhang  Dong  Wu  Wei-Guo 《计算机科学技术学报》2019,34(2):456-475
Journal of Computer Science and Technology - DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front...  相似文献   
70.
SiC nano wires were fabricated on the silicon substrate dipped with a layer of Ni catalyst at 900 ℃ by gas pressure annealing processing. The morphologies and crystal structures were determined by scanning electron microscopy(SEM), transmission electron microscopy(TEM)and X-ray diffraction(XRD). The results show that the assynthesized nanowires are β-SiC single crystalline with diameter range of 50-100 nm, and length of tens of micron by directly annealing at 900 ℃. The SiC nano wires grow along the [111] direction with highly uniform morphology. And the possible growth mechanism of SiC nano wires is proposed.The present work provides an efficient strategy for the production of high-quality SiC nano wires.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号