首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1642篇
  免费   67篇
  国内免费   5篇
工业技术   1714篇
  2024年   6篇
  2023年   18篇
  2022年   32篇
  2021年   59篇
  2020年   42篇
  2019年   44篇
  2018年   77篇
  2017年   59篇
  2016年   71篇
  2015年   24篇
  2014年   52篇
  2013年   117篇
  2012年   81篇
  2011年   115篇
  2010年   75篇
  2009年   68篇
  2008年   81篇
  2007年   66篇
  2006年   66篇
  2005年   47篇
  2004年   35篇
  2003年   26篇
  2002年   37篇
  2001年   15篇
  2000年   20篇
  1999年   19篇
  1998年   20篇
  1997年   14篇
  1996年   13篇
  1995年   22篇
  1994年   14篇
  1993年   23篇
  1992年   21篇
  1991年   15篇
  1990年   26篇
  1989年   15篇
  1988年   15篇
  1987年   21篇
  1986年   16篇
  1985年   19篇
  1984年   15篇
  1983年   18篇
  1982年   17篇
  1981年   21篇
  1980年   10篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1967年   2篇
排序方式: 共有1714条查询结果,搜索用时 390 毫秒
991.
Mullite-SiC nanocomposites are synthesized by introducing surface modified sol-gel mullite coated SiC particles in the matrix and densification and associated microstructural features of such precursor are reported. Nanosize SiC (average size 180 nm) surface was first provided with a mullite precursor coating which was characterized by the X-ray analysis and TEM. An average coating thickness of 120 nm was obtained on the SiC particles. The green compacts obtained by cold isostatic pressing were sintered in the range 1500–1700°C under pressureless sintering in the N2 atmosphere. The percentage of the theoretical sintered density decreases with increase in SiC content. A maximum sintered density of 97% was achieved for mullite-5 vol.% SiC. The fractograph of the sintered composite showed a highly dense, fine grained microstructure with the SiC particles uniformly distributed along the grains as well as at the grain boundaries inside the mullite. The Vicker’s microhardness of mullite-5 vol.% SiC composite was measured as 1320 kg/mm2 under an applied indentation load of 500 g. This value gradually decreased with an increase in SiC content.  相似文献   
992.
Electrokinetic dewatering of Turkish glass sand plant tailings   总被引:1,自引:0,他引:1  
In this study, the dewatering of glass sand plant tailings from Mersin, Turkey was investigated using an electrokinetic technique. The particle size (d(80)) of the solid waste material tested was less than 0.020 mm and consisted mainly of silica, orthoclase, alumina, potassium and iron oxides. In current plant practice, Larox high-pressure filters are used to produce a filter cake containing 22-25% moisture. As an alternative, a laboratory-scale dewatering pond using an electrokinetic technique was designed and a final product (cake) containing 34% moisture was obtained after 24h treatment using 14.6 V direct current applied for 40 min. When the treatment continued up to 48 h, a firm-to-hard cake was produced.  相似文献   
993.
The tensile strengths of composites of 339 aluminum reinforced with either SAFFIL or KAOWOOL fibers are compared over the temperature range of 20 °C to 300 °C. For this type of composite, in which the discontinuous fibers are randomly oriented, the fibers perpendicular to the applied stress play a critical role, which in turn creates a dependence upon the interfacial bond strength. The KAOWOOL fibers form a strong interfacial bond so that tensile failure occurs either in the matrix at 300 °C or by fiber cleavage at 20 °C. In the T5 condition, the SAFFIL interface is weaker than the matrix alloy so that failure occurs by delamination of the transverse fibers. Thus, although the SAFFIL fibers are 40 pct stronger than the KAOWOOL fibers, the T5 composites have the same ultimate tensile strengths. A T6 heat treatment promotes an interfacial reaction with magnesium. This strengthens the SAFFIL interface so that failure occurs primarily in the matrix, producing higher composite strengths. The reaction with the KAOWOOL fibers is so extensive that the matrix, and therefore the composite strength, is drastically decreased. When account is taken of the different fracture modes, together with the matrix strengths as determined by nanoindentation, the calculated values of composite strength are in good agreement with experiment.  相似文献   
994.
Hysteresis loss has been measured at constant stress and constant strain, at various holding times under tensile deformation of natural rubber (NR) and styrene-butadiene rubber (SBR) vulcanizates filled with various loadings of carbon black filler. The effects of temperatures (25°C to 150°C), strain rates (3.78 × 10?5 sec?1 to 210 × 10?3 sec?1) and strain levels (20% to 300%) have been studied. Hysteresis loss and hysteresis loss ratio increase with an increase in strain rate, filler loading, strain level and holding time. It decreases with an increase of temperature. However, higher hysteresis loss and hysteresis loss ratio are observed at constant stress than at constant strain. NR and SBR vulcanizates show similar behavior. Evidence has been produced for the existence of a distinct relaxation process that occurs within first 120 second of holding time at room temperature. This process becomes less important as the strain or the temperature is increased. However, at high temperature another distinct relaxation process has been observed. The activation energy has been found to be 66.3 kJ/mole for the rates at the higher holding time, while it has been found to be 17.3 kJ/mole for the rates at the lower holding time using the data of hysteresis loss at first cycle of 40 phr black filled NR vulcanizates.  相似文献   
995.
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.  相似文献   
996.
In this work, we used ωB97XD density functional and 6-31++G** basis set to study the structure, electron affinity, populations via Boltzmann distribution, and one-electron reduction potentials (E°) of 2′-deoxyribose sugar radicals in aqueous phase by considering 2′-deoxyguanosine and 2′-deoxythymidine as a model of DNA. The calculation predicted the relative stability of sugar radicals in the order C4′ > C1′ > C5′ > C3′ > C2′. The Boltzmann distribution populations based on the relative stability of the sugar radicals were not those found for ionizing radiation or OH-radical attack and are good evidence the kinetic mechanisms of the processes drive the products formed. The adiabatic electron affinities of these sugar radicals were in the range 2.6–3.3 eV which is higher than the canonical DNA bases. The sugar radicals reduction potentials (E°) without protonation (−1.8 to −1.2 V) were also significantly higher than the bases. Thus the sugar radicals will be far more readily reduced by solvated electrons than the DNA bases. In the aqueous phase, these one-electron reduced sugar radicals (anions) are protonated from solvent and thus are efficiently repaired via the “electron-induced proton transfer mechanism”. The calculation shows that, in comparison to efficient repair of sugar radicals by the electron-induced proton transfer mechanism, the repair of the cyclopurine lesion, 5′,8-cyclo-2′-dG, would involve a substantial barrier.  相似文献   
997.
998.
Wireless Personal Communications - In the original article, the captions to Figs. 4 and 5 were incorrect and incomplete, respectively. They should read as follows.  相似文献   
999.
Gelatinization, pasting, digestibility and estimated glycaemic index of six high amylose rice varieties differing in length/width ratio were studied. Amylose content ranged narrowly (27.8–29.1%). Resistant starch content ranged from 0.44% to 1.4%. In contrast to gelatinisation enthalpy, gelatinisation temperature (GT) ranged narrowly (76.7–77.4 °C). For all rice varieties, melting temperature of amylose-lipid complex I and II was around 99 °C and 110 °C, respectively. The enthalpy of amylose-lipid complex I and II ranged between 0.18–0.87 and 0.23–0.55, respectively. Expected in vitro glycaemic index (GI) of all tested varieties was similar (88.2–92.4). The results showed that the size of the rice grain (length/width) and resistant starch content had no apparent impact on the GI of high amylose rice. The dominant factors determining the digestibility and glycaemic response of the tested high amylose rice varieties seemed to be amylose content and the GT. Besides the pasting temperature, other pasting properties varied significantly but were not correlated to starch digestibility and estimated GI among the six rice varieties. Thus, RVA pasting properties, except for pasting temperature, may not be good predictors for the GI of these high amylose rice.  相似文献   
1000.
Multi-ion doping in synthetic HA was carried out using high energy planetary ball milling followed by calcination at 1250?°C for 2?h. The influence of Sr+2, Zn+2, Ag+, and F- ion doping on crystallinity and crystallite size was analyzed using Taguchi design of experiments (DOE) and optimal concentration of different dopants has been identified to achieve desired crystallinity and crystallite size. The doped HA samples have been characterized using X-ray diffraction and Fourier transform infrared spectroscopy to determine their phase purity, degree of crystallinity, crystallite size and functional groups. Standard Analysis of variance (ANOVA) showed relatively high contribution of Sr+2 and Zn+2 doping in changing the crystallinity and crystal size of HA compared to the effect of Ag+ and F- doping. Our analysis demonstrated strong interaction between dopants at binary level doping, while ternary and quaternary doping of elements did not exhibit any interaction in influencing the crystallinity and crystallite size of HA. In general, multi-ion doping in HA found to decrease its crystallinity from 92% to 72% (max.), but enhance the hardness, depending on the type and concentration of doping element. Similarly, a minimum crystallite size of 31?nm was achieved with some binary compositions and other combinations resulted in crystallite sizes up to 59?nm. The compositions that ensure desired crystallinity and crystallite size can also provide high hardness. Our results can be used to tailor the composition of HA in achieving desired functional properties, dependent on crystallinity and crystallite size, such as strength, bioactivity and degradation to suit variety of implant applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号