首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   26篇
  国内免费   7篇
工业技术   500篇
  2024年   1篇
  2023年   9篇
  2022年   17篇
  2021年   35篇
  2020年   29篇
  2019年   41篇
  2018年   32篇
  2017年   31篇
  2016年   36篇
  2015年   16篇
  2014年   31篇
  2013年   49篇
  2012年   39篇
  2011年   27篇
  2010年   19篇
  2009年   13篇
  2008年   11篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
11.
In this article, the effects of two inorganic corrosion inhibitors, permanganate and phosphate anions, on morphology, composition, thickness, and corrosion resistance of the anodic film formed on 2024 aluminum alloy in sulfuric acid were investigated. Surface morphology of the oxide films were studied by field emission scanning electron microscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization tests were conducted to assess the corrosion resistance of the coatings. These analyses showed that the presence of the mentioned inhibitors changed the coating morphology, especially in the case of phosphate ions. Corrosion results indicated that using inhibitors during the anodizing process increased the corrosion resistance of the anodized samples. The increases were approximately 81% and 97% for 0.05 M of permanganate and phosphate ions, respectively, compared with the anodized coatings in the absence of additives. An increase in the inhibitor concentration results in better corrosion resistance of the aluminum anodic layer.  相似文献   
12.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   
13.
JH Kwon  K Akram  KC Nam  B Min  EJ Lee  DU Ahn 《Journal of food science》2012,77(9):C1000-C1004
Abstract: Hydrocarbons, gas compounds, and off‐odor volatiles were determined for irradiated (0 or 5 kGy) commercial sausages with different fat contents (16% and 29%) during a 60‐d storage period at 4 °C. Total of 4 hydrocarbons (C14:1, C15:0, C16:2, and C17:1) were detected only in irradiated sausages: the amount of C16:2 was the highest, followed by C17:1, C14:1, and C15:0. The concentrations of hydrocarbons decreased significantly (P < 0.05) with storage, but were still detectable at the end of 60‐d storage. Irradiated sausages produced significantly higher amounts of CO than the nonirradiated ones. CH4 was detected only in irradiated sausages. Dimethyl disulfide was detected only in irradiated sausages and its concentration decreased significantly (P < 0.05) with storage. Fat content of sausages showed a significant effect on the production and retention of hydrocarbons, gas compounds, and sulfur volatiles in irradiated sausages during storage. Some hydrocarbons (C16:2, C17:1, C14:1, and C15:0), CH4, and dimethyl disulfide were only found in irradiated sausages indicating that these compounds can be used as potential markers for irradiated sausages.  相似文献   
14.
Medical systems based on state of the art image processing and pattern recognition techniques are very common now a day. These systems are of prime interest to provide basic health care facilities to patients and support to doctors. Diabetic macular edema is one of the retinal abnormalities in which diabetic patient suffers from severe vision loss due to affected macula. It affects the central vision of the person and causes total blindness in severe cases. In this article, we propose an intelligent system for detection and grading of macular edema to assist the ophthalmologists in early and automated detection of the disease. The proposed system consists of a novel method for accurate detection of macula using a detailed feature set and Gaussian mixtures model based classifier. We also present a new hybrid classifier as an ensemble of Gaussian mixture model and support vector machine for improved exudate detection even in the presence of other bright lesions which eventually leads to reliable classification of input retinal image in different stages of macular edema. The statistical analysis and comparative evaluation of proposed system with existing methods are performed on publicly available standard retinal image databases. The proposed system has achieved average value of 97.3%, 95.9% and 96.8% for sensitivity, specificity and accuracy respectively on both databases.  相似文献   
15.
A new lead complex, [Pb(mq)2], (mq = 2-methyl-8-hydroxyquinoline) was prepared via an electrochemical route from the oxidation of lead metal in the presence of 2-methyl-8-hydroxyquinoline in a fast and facile process. The complex was fully characterized by means of NMR and IR spectra and elemental analysis. The nanostructure of the prepared compound was obtained by sonoelectrochemical process and studied by scanning electron microscopy, atomic force microscopy, X-ray powder diffraction, IR spectroscopy and elemental analysis. Thermal stability of single crystalline and nanosize samples of the prepared compound was studied by thermal gravimetric and differential thermal analysis. The photoluminescence properties of the prepared compounds, as single crystals and as nanorods, have been investigated. The results showed a good correlation between the size and the shape of the complex particles and emission wavelength. The prepared complex was doped in PVK:PBD blend as guest and its application in the fabrication of OLED was studied. The ratio of lead complex was modified and was equal to 8 (w/w %) in PVK:PBD (100:40).  相似文献   
16.
The potential of two zygomycetes fungi, Mucor indicus and Rhizopus oryzae, in assimilating citrus waste free sugars (CWFS) and producing fungal chitosan, oil, and protein as well as ethanol was investigated. Extraction of free sugars from citrus waste can reduce its environmental impact by decreasing the possibility of wild microorganisms growth and formation of bad odors, a typical problem facing the citrus industries. A total sugar concentration of 25.1 g/L was obtained by water extraction of citrus waste at room temperature, used for fungal cultivation in shake flasks and airlift bioreactor with no additional nutrients. In shake flasks cultivations, the fungi were only able to assimilate glucose, while fructose remained almost intact. In contrast, the cultivation of M. indicus and R. oryzae in the four-liter airlift bioreactor resulted in the consumption of almost all sugars and production of 250 and 280 g fungal biomass per kg of consumed sugar, respectively. These biomasses correspondingly contained 40% and 51% protein and 9.8% and 4.4% oil. Furthermore, the fungal cell walls, obtained after removing the alkali soluble fraction of the fungi, contained 0.61 and 0.69 g chitin and chitosan per g of cell wall for M. indicus and R. oryzae, respectively. Moreover, the maximum ethanol yield of 36% and 18% was obtained from M. indicus and R. oryzae, respectively. Furthermore, that M. indicus grew as clump mycelia in the airlift bioreactor, while R. oryzae formed spherical suspended pellets, is a promising feature towards industrialization of the process.  相似文献   
17.
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.  相似文献   
18.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
19.
In this work, multi-wall carbon nanotube (MWCNT) was successfully modified using aqueous solution of Oxone as a new oxidant. The effect of oxidation temperature on various characteristics of the treated MWCNTs was also investigated. FTIR and titration analysis proved the formation of carboxyl, carbonyl and epoxide groups at the surface of MWCNTs. The concentration of the functional groups increased as the modification temperature increased. The presence of such oxygen containing groups at the surface of MWCNTs justified the long time stability of the treated MWCNTs suspensions in water and methanol. The modified MWCNTs showed higher entanglement compared to row MWCNT due to the cross-links adjacent effect of pendant functional groups. Finally, it was concluded that Oxone oxidation process destroys the structure of the MWCNTs, but not severe enough to unzip the MWCNTs.  相似文献   
20.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号