首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   127篇
  国内免费   8篇
工业技术   2267篇
  2024年   10篇
  2023年   34篇
  2022年   105篇
  2021年   120篇
  2020年   100篇
  2019年   95篇
  2018年   117篇
  2017年   99篇
  2016年   117篇
  2015年   112篇
  2014年   129篇
  2013年   256篇
  2012年   143篇
  2011年   155篇
  2010年   125篇
  2009年   92篇
  2008年   64篇
  2007年   51篇
  2006年   35篇
  2005年   54篇
  2004年   33篇
  2003年   23篇
  2002年   18篇
  2001年   13篇
  2000年   9篇
  1999年   16篇
  1998年   23篇
  1997年   12篇
  1996年   10篇
  1995年   12篇
  1994年   7篇
  1993年   11篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有2267条查询结果,搜索用时 15 毫秒
51.
The present paper is focused on exploiting Plackett–Burman design to examine the formulation effect of various chemical components content on the curing characteristics of oil palm ash (OPA)-filled acrylonitrile butadiene rubber (NBR) compound. The filled-NBR compound was prepared by conventional laboratory-sized two roll mill and cured using sulfuric system. Six independent variables such as content of zinc oxide, stearic acid, N-isopropyl-N′-phenyl-p-phenylenediamine, N-cyclohexyl-2-benzothiazole sulfenamide (CBS), sulfur, and even OPA filler were carried out to screen their significant effect on the curing characteristics of NBR compound. The scorch time, optimal cure time, minimum torque, and maximum torque were selected as a response. Results showed that the scorch time and the optimal cure time were significantly affected by CBS, whereas the minimum torque and maximum torque were significantly affected by OPA and sulfur, respectively, within the studied range. Among the chemical components under study, zinc oxide and stearic acid had the least effect on the curing properties of NBR compound. Analysis of variances for all factorial models demonstrated that the model was significant with P value <0.05 while the regularity (R 2) of all models was greater than 0.9. Lastly, the optimal chemical concentrations were predicted to acquire the optimal condition of the curing system for filled-NBR compound.  相似文献   
52.
Bulletin of Engineering Geology and the Environment - Ten potentially abrasive rock samples selected from various locations of Pakistan covering igneous, metamorphic and sedimentary rocks were...  相似文献   
53.
In this paper, the effect of horizontal bracing on enhancing the resistance of steel moment frames against progressive collapse is investigated. Previously designed 6 bay by 3 bay 18‐story steel frame prototype building with 6 m bay span (namely, unbraced frame), which was susceptible to progressive collapse, is retrofitted by four types of horizontal bracing systems on the perimeter of the topmost story and analyzed using 3D nonlinear dynamic method. Six different cross‐sections for each bracing system type are considered, and the capacity curves for each model are obtained. Three column removal circumstances, namely, Edge Short Column, First Edge Long Column, and Edge Long Column are considered in this paper. The results imply that horizontal bracing would increase the resistance of moment frames against progressive collapse. However, one of the bracing types in which axial compressive force is created in braces is not appropriate for retrofitting.  相似文献   
54.
Journal of Applied Electrochemistry - A microbial fuel cell (MFC) is an electricity-generating device utilising electrochemically active microorganisms as biocatalysts. Using MFC as a biosensor to...  相似文献   
55.
Recently, graphene and its derivatives have been used to develop polymer composites with improved or multifunctional properties. Exfoliated graphite nanoplatelets (GNP) reinforced composite materials based on blend of polyethylene terephthalate (PET), and polypropylene (PP) compatibilized with styrene–ethylene–butylene–styrene‐g‐maleic anhydride is prepared by melt extrusion followed by injection molding. Characterization of the composites' microstructure and morphology was conducted using field emission scanning electron microscopy, transmission electron microscopy (TEM), X‐ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). Tensile and impact strengths of test specimens were evaluated and the results showed maximum values at 3phr GNP in both the cases. Morphological studies showed that the GNPs were uniformly dispersed within the matrix. Results from XRD analysis showed uniformly dispersed GNPs, which may not have been substantially exfoliated. FTIR spectroscopy did not show any significant change in the peak positions to suggest definitive chemical interaction between GNP and the matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40582.  相似文献   
56.
In attempt to compare the removal efficiency and yield of the activated carbon prepared using the conventional and microwave‐assisted heating is the focus of this work. Toward this olive stone (a biomass precursor) is activated using the popular activating agent potassium hydroxide. The process optimization exercise is carried out by using the standard full factorial statistical design of experiments (response surface methodology). The activated carbons prepared under the optimized conditions are compared based on the adsorption capacity and yield. The adsorption capacity was found higher using microwave heating as compared with conventional heating. The microwave heating requires significantly lesser holding time as compared to conventional heating method to produce activated carbon of comparable quality, with higher yield. The BET surface area of carbon using microwave heating is significantly higher than the conventional heating. Although the mesopore surface area of carbon is not vary significantly, the activation time, power, and nitrogen gas consumption are significantly lower than the conventional heating rendering that the activation process via microwave is more economical than that via conventional heating. The adsorption isotherm data fitted the Langmuir isotherm well and the monolayer adsorption capacity was found to be 12.0 and 8.42 mg/g for microwave and thermally heated activated carbon, respectively. Regeneration studies showed that microwave‐irradiated and thermally heated olive stone could be used several times by desorption with an HCl reagent. Both carbons can be used for the efficient removal of Ni2+ (>99%) from contaminated wastewater. © 2013 American Institute of Chemical Engineers AIChE J, 60: 237–250, 2014  相似文献   
57.
In light of the coronavirus disease 2019 (COVID-19) outbreak caused by the novel coronavirus, companies and institutions have instructed their employees to work from home as a precautionary measure to reduce the risk of contagion. Employees, however, have been exposed to different security risks because of working from home. Moreover, the rapid global spread of COVID-19 has increased the volume of data generated from various sources. Working from home depends mainly on cloud computing (CC) applications that help employees to efficiently accomplish their tasks. The cloud computing environment (CCE) is an unsung hero in the COVID-19 pandemic crisis. It consists of the fast-paced practices for services that reflect the trend of rapidly deployable applications for maintaining data. Despite the increase in the use of CC applications, there is an ongoing research challenge in the domains of CCE concerning data, guaranteeing security, and the availability of CC applications. This paper, to the best of our knowledge, is the first paper that thoroughly explains the impact of the COVID-19 pandemic on CCE. Additionally, this paper also highlights the security risks of working from home during the COVID-19 pandemic.  相似文献   
58.
Sepsis has recently been defined as life-threatening organ dysfunction caused by the dysregulated host response to an ongoing or suspected infection. To date, sepsis continues to be a leading cause of morbidity and mortality amongst hospitalized patients. Many risk factors contribute to development of sepsis, including pain-relieving drugs like opioids, which are frequently prescribed post-operatively. In light of the opioid crisis, understanding the interactions between opioid use and the development of sepsis has become extremely relevant, as opioid use is associated with increased risk of infection. Given that the intestinal tract is a major site of origin of sepsis-causing microbes, there has been an increasing focus on how alterations in the gut microbiome may predispose towards sepsis and mediate immune dysregulation. MicroRNAs, in particular, have emerged as key modulators of the inflammatory response during sepsis by tempering the immune response, thereby mediating the interaction between host and microbiome. In this review, we elucidate contributing roles of microRNA 146 in modulating sepsis pathogenesis and end with a discussion of therapeutic targeting of the gut microbiome in controlling immune dysregulation in sepsis.  相似文献   
59.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.  相似文献   
60.
A novel coronavirus of zoonotic origin(SARSCoV-2)has recently been recognized in patients with acute respiratory disease.COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses.The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses.Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients.However,these techniques are expensive and not readily available for point-of-care(POC)applications.Currently,lack of any rapid,available,and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem.To solve the negative features of clinical investigation,we provide a brief introduction of the general features of coronaviruses and describe various amplification assays,sensing,biosensing,immunosensing,and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2.All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus,i.e.,SARS-CoV-2.Also,the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading.Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases,LAMP-based methods and LFAs are of great importance for their numerous benefits,which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号