首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   71篇
  国内免费   28篇
数理化   1475篇
  2024年   9篇
  2023年   11篇
  2022年   70篇
  2021年   64篇
  2020年   72篇
  2019年   55篇
  2018年   69篇
  2017年   58篇
  2016年   98篇
  2015年   64篇
  2014年   85篇
  2013年   154篇
  2012年   108篇
  2011年   94篇
  2010年   77篇
  2009年   48篇
  2008年   62篇
  2007年   54篇
  2006年   37篇
  2005年   32篇
  2004年   20篇
  2003年   23篇
  2002年   21篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1969年   1篇
排序方式: 共有1475条查询结果,搜索用时 0 毫秒
11.
The cyclizations of two structurally similar 2-oxo-5-hexenyl-type radicals have been investigated by ab initio and density functional (UB3LYP/6-31+G**//UHF/6-31G* and UB3LYP/6-31G*//UB3LYP/6-31G*) calculations. The origin of apparently contradictory reports of 6-endo and 5-exo cyclizations is determined. Kinetic control favors 6-endo cyclization, while thermodynamic control gives 5-exo cyclization, and the observation of different products from different research groups arises from the difference in experimental conditions used by the two groups. The outcome of a new cyclization reaction was predicted by using these theoretical techniques. Kinetic control is predicted to yield exclusively the products of 6-endo cyclization, while thermodynamic control would lead to an approximately equal mixture of one 6-endo and one 5-exo cyclized product. Experimental studies revealed that the reaction yields only the products of 6-endo cyclization through kinetic control.  相似文献   
12.
13.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   
14.
Extraction of Pr(III), Ho(III) and Er(III) has been studied in the pH range of 1–10 with N-benzoyl-N-phenylhydroxylamine (BPHA) in benzene. The separation was found to be quantitative in borate media from pH 7 to 10, at an ionic strength of 0.1M (H+, BO3 3–). The stoichiometric composition of the complexes under the optimal conditions of shaking time, pH and reagent concentration was formulated using slope analysis and found to be M(BPHA)3, where M=Pr(III), Ho(III) and Er(III). The effect of various masking agents shows that citrate, ascorbate, EDTA, oxalate, fluoride and phosphate form stable complexes with these rare earths as compared to BPHA. The decontamination factors for different cations with respect to these rare earths under the optimum conditions have been evaluated.  相似文献   
15.
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors with high mortality. Chronic hepatitis B and C viruses, aflatoxins, and alcohol are among the most common causes of hepatocellular carcinoma. The limited reported data and multiple spectra of pathophysiological mechanisms of HCC make it a challenging task and a serious economic burden in health care management. Solanum surattense (S. surattense) is the herbal plant used in many regions of Asia to treat many disorders including various types of cancer. Previous in vitro studies revealed the medicinal importance of S. surattense against hepatocellular carcinoma. However, the exact molecular mechanism of S. surattense against HCC still remains unclear. In vitro and in silico experiments were performed to find the molecular mechanism of S. surattense against HCC. In this study, the network pharmacology approach was used, through which multi-targeted mechanisms of S. surattense were explored against HCC. Active ingredients and potential targets of S. surattense found in HCC were figured out. Furthermore, the molecular docking technique was employed for the validation of the successful activity of bioactive constituents against potential genes of HCC. The present study investigated the active “constituent–target–pathway” networks and determined the tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), Bcl-2-like protein 1(BCL2L1), estrogen receptor (ER), GTPase HRas, hypoxia-inducible factor 1-alpha (HIF1-α), Harvey Rat sarcoma virus, also known as transforming protein p21 (HRAS), and AKT Serine/Threonine Kinase 1 (AKT1), and found that the genes were influenced by active ingredients of S. surattense. In vitro analysis was also performed to check the anti-cancerous activity of S. surattense on human liver cells. The result showed that S. surattense appeared to act on HCC via modulating different molecular functions, many biological processes, and potential targets implicated in 11 different pathways. Furthermore, molecular docking was employed to validate the successful activity of the active compounds against potential targets. The results showed that quercetin was successfully docked to inhibit the potential targets of HCC. This study indicates that active constituents of S. surattense and their therapeutic targets are responsible for their pharmacological activities and possible molecular mechanisms for treating HCC. Lastly, it is concluded that active compounds of S. surattense act on potential genes along with their influencing pathways to give a network analysis in system pharmacology, which has a vital role in the development and utilization of drugs. The current study lays a framework for further experimental research and widens the clinical usage of S. surattense.  相似文献   
16.
Worldwide, since ages and nowadays, traditional medicine is well known, owing to its biodiversity, which immensely contributed to the advancement and development of complementary and alternative medicines. There is a wide range of spices, herbs, and trees known for their medicinal uses. Chilli peppers, a vegetable cum spice crop, are bestowed with natural bioactive compounds, flavonoids, capsaicinoids, phytochemicals, phytonutrients, and pharmacologically active compounds with potential health benefits. Such compounds manifest their functionality over solo-treatment by operating in synergy and consortium. Co-action of these compounds and nutrients make them potentially effective against coagulation, obesity, diabetes, inflammation, dreadful diseases, such as cancer, and microbial diseases, alongside having good anti-oxidants with scavenging ability to free radicals and oxygen. In recent times, capsaicinoids especially capsaicin can ameliorate important viral diseases, such as SARS-CoV-2. In addition, capsaicin provides an ability to chilli peppers to ramify as topical agents in pain-relief and also benefitting man as a potential effective anesthetic agent. Such phytochemicals involved not only make them useful and a much economical substitute to wonder/artificial drugs but can be exploited as obscene drugs for the production of novel stuffs. The responsibility of the TRPV1 receptor in association with capsaicin in mitigating chronic diseases has also been justified in this study. Nonetheless, medicinal studies pertaining to consumption of chilli peppers are limited and demand confirmation of the findings from animal studies. In this artifact, an effort has been made to address in an accessible format the nutritional and biomedical perspectives of chilli pepper, which could precisely upgrade and enrich our pharmaceutical industries towards human well-being.  相似文献   
17.
In this study, cerium oxide nanorods (CeO2-NRs) were synthesized by using the phytochemicals present in the Dalbergia sissoo extract. The physiochemical characteristics of the as-prepared CeO2-NRs were investigated by using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The SEM and UV-VIS analyses revealed that the acquired nanomaterials possessed a rod-like morphology while the XRD results further confirmed that the synthesized NRs exhibited a cubic crystal lattice system. The antioxidant capacity of the synthesized CeO2-NRs was investigated by using several in vitro biochemical assays. It was observed that the synthesized NRs exhibited better antioxidant potential in comparison to the industrial antioxidant of the butylated hydroxyanisole (BHA) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biochemical assays, including lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase activity (CAT), were also performed in the human lymphocytes incubated with the CeO2-NRs to investigate the impact of the NRs on these oxidative biomarkers. Enhanced reductive capabilities were observed in all the assays, revealing that the NRs possess excellent antioxidant properties. Moreover, the cytotoxic potential of the CeO2-NRs was also investigated with the MTT assay. The CeO2-NRs were found to effectively kill off the cancerous cells (MCF-7 human breast cancer cell line), further indicating that the synthesized NRs exhibit anticancer potential as well. One of the major applications studied for the prepared CeO2-NRs was performing the statistical optimization of the photocatalytic degradation reaction of the methyl orange (MO) dye. The reaction was optimized by using the technique of response surface methodology (RSM). This advanced approach facilitates the development of the predictive model on the basis of central composite design (CCD) for this degradation reaction. The maximum degradation of 99.31% was achieved at the experimental optimized conditions, which corresponded rather well with the predicted percentage degradation values of 99.58%. These results indicate that the developed predictive model can effectively explain the performed experimental reaction. To conclude, the CeO2-NRs exhibited excellent results for multiple applications.  相似文献   
18.
The current study was designed to investigate the feasibility of incorporating the water-insoluble lipophilic drug Alprazolam (Alp) into solid lipid nanoparticles (SLNs) to offer the combined benefits of the quick onset of action along with the sustained release of the drug. Therefore, compritol-based alprazolam-loaded SLNs (Alp-SLNs) would provide early relief from anxiety and sleep disturbances and long-lasting control of symptoms in patients with depression, thereby enhancing patient compliance. The optimized Alp-SLNs analyzed by DLS and SEM showed consistent particle size of 92.9 nm with PI values and standard deviation of the measurements calculated at <0.3 and negative surface charge. These characteristic values demonstrate the desired level of homogeneity and good physical stability of Alp-SLNs. The SLNs had a good entrapment efficiency (89.4%) and high drug-loading capacity (77.9%). SEM analysis revealed the smooth spherical morphology of the SLNs. The physical condition of alprazolam and absence of interaction among formulation components in Alp-SLNs was confirmed by FTIR and DSC analyses. XRD analysis demonstrated the molecular dispersion of crystalline alprazolam in Alp-SLNs. The in vitro release study implied that the release of Alp from the optimized Alp-SLN formulation was sustained as compared to the Alp drug solution because Alp-SLNs exhibited sustained release of alprazolam over 24 h. Alp-SLNs are a promising candidate to achieve sustained release of the short-acting drug Alp, thereby reducing its dosing frequency and enhancing patient compliance.  相似文献   
19.
Ring-opening metathesis polymerization (ROMP)-derived poly(oxanorbornene imide)s bearing bay-linked mono - alkoxy -M1 and 1,7-di-alkoxy M2 functionalized perylene diimides (PDIs) were synthesized using Grubb's third ( G3 ) and Hoveyda-Grubbs second generation ( HG2 ) ruthenium-alkylidene metathesis initiators. The mono-alkoxy-derived PDI-based non-ladderphane polymer poly M1 displayed 67% to 77% of the trans olefin content in the polymer chain depending on the initiator used for the polymerization. When using the symmetrical 1,7-di-alkoxy-derived PDI-based polymer poly M2 having the ladderphane type-structure, this displayed a significant amount of cis and trans olefin contents in the polymer chains, irrespective of the type of initiators used for the polymerization. ROMP of both monomers M1 and M2 proceeded in a well-controlled manner with a linear dependence of molecular weight on the monomer/initiator ratio using G3 as initiator. Optical properties of the ladderphane-based poly M2 and non-ladderphane-based poly M1 were characterized in both solution and the film state. X-ray diffraction (XRD) analysis for all the polymers showed significant π-stacking in the thin film state with ordered molecular packing and closer values of d-spacing for both poly M1 and poly M2 . Film morphology examined by AFM elucidated homogenous smooth polymer surface for both polymers in general, but with some irregularities observed for poly M1 . In addition, CV analysis revealed both polymers could be good candidates as electron-accepting materials, with excellent film-forming ability, and thermal stability.  相似文献   
20.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号