首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   22篇
  国内免费   10篇
数理化   989篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   15篇
  2016年   18篇
  2015年   19篇
  2014年   28篇
  2013年   38篇
  2012年   41篇
  2011年   48篇
  2010年   27篇
  2009年   40篇
  2008年   50篇
  2007年   47篇
  2006年   61篇
  2005年   57篇
  2004年   59篇
  2003年   43篇
  2002年   41篇
  2001年   8篇
  2000年   16篇
  1999年   23篇
  1998年   14篇
  1997年   26篇
  1996年   10篇
  1995年   9篇
  1994年   11篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   9篇
  1982年   15篇
  1981年   15篇
  1980年   11篇
  1979年   22篇
  1978年   8篇
  1977年   14篇
  1976年   14篇
  1975年   8篇
  1974年   4篇
  1973年   4篇
  1971年   5篇
排序方式: 共有989条查询结果,搜索用时 15 毫秒
61.
An oxidative dimerization reaction, involving the three successive steps of oxidation, 6 pi-electrocyclization, and Diels-Alder reaction, has been experimentally and theoretically investigated for the three 2-alkenyl-3-hydroxymethyl-2-cyclohexen-1-one derivatives epoxyquinol 3, epoxyquinone 6, and cyclohexenone 10. Of the sixteen possible modes of the oxidation/6 pi-electrocylization/Diels-Alder reaction cascade for the epoxyquinone 6, and eight for the cyclohexenone 10, only the endo-anti(epoxide)-anti(Me)-hetero and endo-anti(Me)-hetero modes are, respectively, observed, while both endo-anti(epoxide)-anti(Me)-hetero and exo-anti(epoxide)-anti(Me)-homo reaction modes occur with the epoxyquinol 3. Intermolecular hydrogen-bonding is found to be the key cause of formation of both epoxyquinols A and B with 3, although epoxyquinone 6 and cyclohexenone 10 both gave selectively only the epoxyquinol A-type product. In the dimerization of epoxyquinol 3, two monomer 2H-pyrans 5 interact with each other to afford intermediate complex 28 or 29 stabilized by hydrogen-bonding, from which Diels-Alder reaction proceeds. Theoretical calculations have also revealed the differences in the reaction profiles of epoxyquinone 6 and cyclohexenone 10. Namely, the rate-determining step of the former is the Diels-Alder reaction, while that of the latter is the 6 pi-electrocyclization.  相似文献   
62.
The stereoregular synthetic polymer isotactic polystyrene bearing partially sulfonated groups (SiPS) was used as a layer-by-layer assembled thin film for the first time. When a low molecular weight compound was employed as the pair for the alternative layer-by-layer (LbL) assembly, the frequency shift was very small using quartz crystal microbalance (QCM) analysis, whereas poly(vinylamine) (PVAm) formed an effective pair for the construction of LbL films with SiPS. When it was neutralized, SiPS was not assembled, probably due to the loss of effective polymer-polymer interactions. The ionic strength conditions revealed a slight difference of the assembly behavior on the isotactic polymer as compared to the atactic one. The assembled LbL film showed the same peaks over the range from 1141 to 1227 cm(-1) and 700 cm(-1) in the FT-IR/ATR spectra as the bulk complex of SiPS/PVAm, and the thickness on one side was calculated at 76 nm by QCM analysis. The surface roughness of the film was also observed by AFM.  相似文献   
63.
The synthesis and biological evaluation of the Forssman antigen pentasaccharide and derivatives thereof by using a one‐pot glycosylation and polymer‐assisted deprotection is described. The Forssman antigen pentasaccharide, composed of GalNAcα(1,3)GalNAcβ(1,3)Galα(1,4)Galβ(1,4)Glc, was recently identified as a ligand of the lectin SLL‐2 isolated from an octocoral Sinularia lochmodes. The chemo‐ and α‐selective glycosylation of a thiogalactoside with a hemiacetal donor by using a mixture of Tf2O, TTBP and Ph2SO, followed by activation of the remaining thioglycoside, provided the trisaccharide at the reducing end in a one‐pot procedure. The pentasaccharide was prepared by the α‐selective glycosylation of the N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) thioglycoside with a 2‐azide‐1‐hydroxyl glycosyl donor, followed by glycosidation of the resulting disaccharide at the C3 hydroxyl group of the trisaccharide acceptor in a one‐pot process. We next applied the one‐pot glycosylation method to the synthesis of pentasaccharides in which the galactosamine units were partially and fully replaced by galactose units. Among the three possible pentasaccharides, Galα(1,3)GalNAc and Galα(1,3)Gal derivatives were successfully prepared by the established method. An assay of the binding of the synthetic oligosaccharides to a fluorescent‐labeled SLL‐2 revealed that the NHAc substituents and the length of the oligosaccharide chain were both important for the binding of the oligosaccharide to SLL‐2. The inhibition effect of the oligosaccharide relative to the morphological changes of Symbiodinium by SLL‐2, was comparable to their binding affinity to SLL‐2. In addition, we fortuitously found that the synthetic Forssman antigen pentasaccharide directly promotes a morphological change in Symbiodinium. These results strongly indicate that the Forssman antigen also functions as a chemical mediator of Symbiodinium.  相似文献   
64.
65.
The reaction of singlet oxygen (1O2) generated by ultraviolet-A (UVA)-visible light (lambda > 330 nm) irradiation of air-saturated solutions of hematoporphyrin with phenolic compounds in the presence of a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), gave an electron spin resonance (ESR) spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO-*OH). In contrast, the ESR signal of 5,5-dimethyl-2-pyrrolidone-N-oxyl, an oxidative product of DMPO, was observed in the absence of phenolic compounds. The ESR signal of DMPO-*OH decreased in the presence of either a *OH scavenger or a quencher of *O2 and under anaerobic conditions, whereas it increased depending on the concentration of DMPO. These results indicate both 1O2- and DMPO-mediated formation of free *OH during the reaction. When DMPO was replaced with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), no DEPMPO adduct of oxygen radical species was obtained. This suggests that 1O2, as an oxidizing agent, reacts little with DEPMPO, in which a strong electron-withdrawing phosphoryl group increases the oxidation potential of DEPMPO compared with DMPO. A linear correlation between the amounts of DMPO-*OH generated and the oxidation potentials of phenolic compounds was observed, suggesting that the electron-donating properties of phenolic compounds contribute to the appearance of *OH. These observations indicate that 1O2 reacts first with DMPO, and the resulting DMPO-1O2 intermediate is immediately decomposed/reduced to give *OH. Phenolic compounds would participate in this reaction as electron donors but would not contribute to the direct conversion of 1O2 to *OH. Furthermore, DEPMPO did not cause the spin-trapping agent-mediated generation of *OH like DMPO did.  相似文献   
66.
Washio I  Shibasaki Y  Ueda M 《Organic letters》2003,5(22):4159-4161
[structure: see text]. A fast, inexpensive, and highly efficient synthesis of aromatic polyamide dendrimers without the need for protection and deprotection steps has been developed. Dendrons and third-generation polyamide dendrimers were easily prepared by a convergent approach involving activation of a focal point with thionyl chloride, followed by condensation with unprotected AB2 building blocks.  相似文献   
67.
New polyphthalimidine-forming monomers, 5,5′-(oxydi-p-phenylenedicarbonyl)bis(3-benzylidenephthalide) and the 6,6′-derivative, were synthesized by the Friedel–Crafts reaction of diphenyl ether with 5- and 6-chloroformyl-3-benzylidenephthalide, respectively. The direct polycondensation of these bisphthalides with both aliphatic and aromatic diamines in o-phenylphenol at 200–250°C afforded polyphthalimidines having inherent viscosities of 0.2–1.2 dL/g in almost quantitative yields. Syntheses of aliphatic polyphthalimidines with higher inherent viscosities were also achieved by a two-step procedure involving ring-opening polyaddition and subsequent thermal cyclodehydration. All the polymers were amorphous and readily soluble in N-methyl-2-pyrrolidone (NMP), m-cresol, nitrobenzene, pyridine, and chloroform. Tough and flexible films could be cast from NMP solutions of the polymers. Glass transition temperatures of the polyphthalimidines were in the range of 158–246°C. The thermogravimetry of the aromatic polymers showed 10% weight loss in air and nitrogen at 445–515 and 500–520°C, respectively. The crosslinking reaction of some benzylidenependant polyphthalimidines took place at 300°C through double-bond addition to afford cured polymers with improved thermal stability.  相似文献   
68.
tert-Butyl substituted poly (aryl ether ketone)s with relatively high molecular weights were prepared by the Ni-catalyzed polymerization of tert-butyl substituted aromatic dichlorides containing ether ketone unit. These polymers were amorphous and soluble in common organic solvents, such as THF, dichloromethane, and chloroform. De-tert-butylation of the polymer by the treatment of trifluoromethanesulfonic acid in the presence of toluene proceeded smoothly and produced crystalline poly (aryl ether ketone). © 1994 John Wiley & Sons, Inc.  相似文献   
69.
Poly[4-(4-hydroxyphenoxy) benzoic acid] was prepared by the bulk polycondensation of 4-(4-acetoxyphenoxy) benzoic acid. Polycondensation was conducted at 350°C for 3 h under a reduced pressure of 0.1 mmHg and gave a polymer with X?n of 255. The polymer was characterized by elemental analysis, IR spectroscopy, differential scanning calorimetry, and wide-angle X-ray measurement. The crystal/nematic and nematic/isotropic phase transition temperatures of polymer, which depend on the molecular weight, were observed at about 300°C and 410°C, respectively. The polymers with low molecular weights showed nematic textures above 300°C. This nematic/isotropic phase transition temperature is lower than that of poly (4-hydroxybenzoic acid). This thermal behavior of polymer comes from ether units, which increase the flexibility (the rotation or torsion of skeletal bonds) of the polymer chain. © 1994 John Wiley & Sons, Inc.  相似文献   
70.
Ultrafast excited state dynamics of spirilloxanthin in solution and bound to the light-harvesting core antenna complexes from Rhodospirillum rubrum S1 were investigated by means of femtosecond pump-probe spectroscopic measurements. The previously proposed S? state of spirilloxanthin was clearly observed both in solution and bound to the light-harvesting core antenna complexes, while the lowest triplet excited state appeared only with spirilloxanthin bound to the protein complexes. Ultrafast formation of triplet spirilloxanthin bound to the protein complexes was observed upon excitation of either spirilloxanthin or bacteriochlorophyll-a. The anomalous reaction of the ultrafast triplet formation is discussed in terms of ultrafast energy transfer between spirilloxanthin and bacteriochlorophyll-a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号