首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   16篇
  国内免费   11篇
数理化   898篇
  2023年   8篇
  2022年   10篇
  2021年   23篇
  2020年   22篇
  2019年   11篇
  2018年   16篇
  2017年   9篇
  2016年   36篇
  2015年   12篇
  2014年   33篇
  2013年   64篇
  2012年   43篇
  2011年   42篇
  2010年   34篇
  2009年   41篇
  2008年   57篇
  2007年   35篇
  2006年   42篇
  2005年   30篇
  2004年   29篇
  2003年   30篇
  2002年   35篇
  2001年   11篇
  2000年   18篇
  1999年   12篇
  1998年   12篇
  1997年   10篇
  1996年   15篇
  1995年   15篇
  1994年   9篇
  1993年   6篇
  1992年   11篇
  1991年   5篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   3篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   10篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
  1965年   2篇
  1916年   4篇
排序方式: 共有898条查询结果,搜索用时 15 毫秒
81.
A method for characterizing and identifying firing patterns of neural spike trains is presented. Based on the time evolution of a neural spike train, the counting process is constructed as a time-dependent stair-like function. Three characteristic variables defined at sequential moments, including two formal derivatives and the integration of the counting process, are introduced to reflect the temporal patterns of a spike train. The reconstruction of a spike train with these variables verify the validity of this method. And a model of cold receptor is used as an example to investigate the temporal patterns under different temperature conditions. The most important contribution of our method is that it not only can reflect the features of spike train patterns clearly by using their geometrical properties, but also it can reflect the trait of time, especially the change of bursting of spike train. So it is a useful complementarity to conventional method of averaging.  相似文献   
82.
83.
We prove that a finite group having a fixed-point-free automorphism in the Fitting subgroup of its automorphism group must be abelian of rather restricted structure. As a consequence, no finite nonabelian group could have a fixed-point-free automorphism in the Frattini subgroup of its automorphism group. Received: 21 April 2007, Revised: 18 May 2007  相似文献   
84.
Assuming elastic-plastic material behavior the slow growth of Mode III crack under both monotonic and pulsating loadings is considered. Rice's idea of universal R-curve is employed while the mathematical analysis is based on the one-dimensional plasticity model suggested by Kostrov and Nikitin. Motion of a quasi-static Mode III crack is studied and the stable/unstable transition points are found through application of the final stretch failure condition proposed in 1972 by Wnuk. A logarithmic formula for fatigue crack extension rate is derived. Results are compared to other well-known solutions.  相似文献   
85.
The reactivity of 2-hydroxy-3,3,5-trimethyl-3,4-dihydro-2H-pyrrole 1-oxide was investigated. The title compound showed unexpected reactivity with several different types of reagents.  相似文献   
86.
The electrochemical and spectroelectrochemical behavior of 9‐substituted with ? CN and ? COOH acridine N‐oxides with potential antitumor activity was investigated. In SER spectra of the investigated compounds, the ring stretching vibration at 1568 cm?1 for 9‐CN‐substituted compound respectively 1639 cm?1 for 9‐COOH‐substituted compound was analyzed. Cyclic voltammograms indicates that the reduction potential ?0.766 V for ? CN substituted compound increase towards ?0.745 V for ? COOH substituted compound. The proposed theoretical method in the electrochemical impedance spectroscopy uses a reference redox dielectrode and a multielectrode containing the compound. To account for the change of electrochemical impedance we have considered two theoretical quantities: a pseudocapacitance and a pseudo inductance. Two possible arrangements of them: in series, respective in parallel can be used like criteria of drug classification.  相似文献   
87.
A new complex of unusual composition [Cu(3-O2Nbz)2(nia)(H2O)2] (1) (nia = nicotinamide, 3-O2Nbz = 3-nitrobenzoate) has been prepared and studied together with two other complexes of composition [Cu(4-O2Nbz)2(nia)2(H2O)2] (2) and [Cu(4-O2Nbz)2(nia)2]?(4-O2NbzH)2 (3) (4-O2Nbz = 4-nitrobenzoate). The composition of all complexes has been determined by elemental analysis, the complexes have been studied by electronic, infrared and EPR spectroscopy, as well as by magnetization measurements over the temperature range 1.8–300 K, and their structures have been solved. The structure of complex (1) consists of molecules, where Cu(II) atom is monodentately coordinated by the pair of 3-nitrobenzoato anions in trans  -positions together with water and nicotinamide molecules, forming nearly tetragonal basal plane, and by another water molecule in axial position of tetragonal-pyramidal coordination polyhedron. The neighboring molecule coordination polyhedron basal planes are coplanar and allow formation of supramolecular dimers with strong H-bonds between hydrogen atoms from equatorially coordinated water molecules and uncoordinated carboxylate oxygen atoms thus giving the nearest Cu??Cu distance of 4.886(2) Å. Magnetization measurements showed that complex (1) exhibits maximum of magnetic susceptibility at 6.5 K and a fit to Bleaney-Bowers equation gave singlet–triplet energy gap 2J = −6.25 cm−1, and zJ′ = −0.03 cm−1. This might be an experimental proof that the carboxylate bridges extended with hydrogen bonds are the pathway of the spin–spin interactions. The temperature dependence of changes in EPR spectra of (1) and the spectrum at 4.2 K have confirmed its hydrogen bonded dimeric structure. The calculated Cu??Cu distance 4.8 Å is in very good agreement with the value obtained from crystal structure. The complexes (2) and (3) at 300 K exhibit magnetic moment μeff = 1.98 B.M. and μeff = 1.84 B.M., respectively. These values practically do not change with lowering the temperature up to 5 K and only small drops to μeff = 1.87 B.M. (for (2)) and μeff = 1.79 B.M. (for (3)) at 1.8 K have been observed. The EPR spectra of complex (2) at room temperature as well as at 77 K are of axial type with g = 2.062 and g|| = 2.285 and exhibit resolved parallel hyperfine splitting with A|| = 160 Gauss. The EPR spectra of complex (3) at room temperature as well as at 77 K are of axial type with g = 2.065 and g|| = 2.235 and exhibit unresolved parallel hyperfine splitting. EPR spectra of (2) and (3) are consistent with the X-ray structure.  相似文献   
88.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   
89.
Research on the chemical composition of fossil resins has evolved during the last decades as a multidisciplinary field and is strongly oriented toward the correlation with their geological and botanical origin. Various extraction procedures and chromatographic techniques have been used together for identifying the volatile compounds contained in the fossil resin matrix. Hyphenation between thermal desorption (TD), gas chromatography (GC) and mass spectrometry detection (MS) has been chosen to investigate the volatile compounds fraction from ambers with a focus on Romanite (Romanian amber) and Baltic amber species. A data analysis procedure was developed for the main purpose of fingerprinting ambers based on the MS identity of the peaks generated by the volatile fraction, together with their relative percentual area within the chromatogram. Chromatographic data analysis was based entirely on Automated Mass Spectral Deconvolution & Identification System (AMDIS) software to produce deconvoluted mass spectra which were used to build-up a mixed mass spectra and relative retention scale library. Multivariate data analysis was further applied on AMDIS results with successful discrimination between Romanite and Baltic ambers. A special trial was conducted to generate pyrolysis “like” macromolecular structure breakdown to volatile compounds by gamma irradiation with a high absorbed dose of 500 kGy. Contrary to our expectations the volatile fraction fingerprints were not modified after irradiation experiments. A complementary non-destructive new approach by ESR spectroscopy was also proposed for discriminating between Romanite and Baltic ambers.  相似文献   
90.
In this note we study the Landau–Hall problem on a generalized canal surface and classify all uniform magnetic trajectories of a charged particle moving on such a surface under the action of a uniform magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号