首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1654篇
  免费   20篇
  国内免费   22篇
数理化   1696篇
  2022年   9篇
  2021年   23篇
  2020年   15篇
  2019年   19篇
  2018年   19篇
  2017年   21篇
  2016年   38篇
  2015年   20篇
  2014年   44篇
  2013年   80篇
  2012年   80篇
  2011年   76篇
  2010年   60篇
  2009年   68篇
  2008年   87篇
  2007年   111篇
  2006年   102篇
  2005年   89篇
  2004年   78篇
  2003年   60篇
  2002年   48篇
  2001年   33篇
  2000年   23篇
  1999年   21篇
  1998年   20篇
  1997年   23篇
  1996年   34篇
  1995年   24篇
  1994年   22篇
  1993年   24篇
  1992年   19篇
  1991年   16篇
  1990年   21篇
  1989年   15篇
  1988年   17篇
  1987年   14篇
  1986年   15篇
  1985年   23篇
  1984年   19篇
  1983年   13篇
  1982年   24篇
  1981年   12篇
  1980年   12篇
  1979年   8篇
  1978年   13篇
  1977年   18篇
  1976年   10篇
  1975年   6篇
  1974年   8篇
  1965年   8篇
排序方式: 共有1696条查询结果,搜索用时 15 毫秒
991.
992.
Ab initio calculations at the second-order M?ller-Plesset perturbation theoretic level have been carried out to study the solvation of protonated water by phenol molecules. The results show that in addition to classical O-H...O hydrogen bonds, C-H...O, pi...H-O, and pi...H-C bonds are also formed, thus stabilizing the H3O+(C(6)H(5)OH)3 complex.  相似文献   
993.
ABTS2-, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, was used as a reference to compare the reactivity of peroxyl radicals of two amino acids, glycine and valine, in aqueous solutions at natural pH. Peroxyl radicals were produced by pulse radiolysis and the product of their reaction with ABTS2- the ABTS*- radical was observed spectrophotometrically. Experimental kinetic traces were fitted using chemical simulation. The rate constants of reactions of glycine and valine peroxyl radicals with ABTS2- were (6.0+/-0.2)x10(6) and (1.3+/-0.1)x10(5) M-1.s-1, respectively. Moreover, it was found that only 60% of glycine radicals formed upon its reaction with *OH radicals reacted with molecular oxygen to yield peroxyl radicals. Comparison of experimental data with simulations of chemical reactions in irradiated ABTS and ABTS/NaSCN solutions showed that ABTS*- forms in the reaction with *OH with a yield of 43% and rate constant of (5.4+/-0.2)x10(9) M-1.s-1 and in the reaction with (SCN)2*- with a yield of 57% and rate constant of (8.0+/-0.2)x10(8) M-1.s-1.  相似文献   
994.
Reduction of nitro-aromatic compounds (NACs) proceeds through intermediates with a partial electron transfer into the nitro group from a reducing agent. To estimate the extent of such a transfer and, therefore, the activity of various model ferrous-containing reductants toward NAC degradation, the unrestricted density functional theory (DFT) in the basis of paired L?wdin-Amos-Hall orbitals has been applied to complexes of nitrobenzene (NB) and model Fe(II) hydroxides including cationic [FeOH]+, then neutral Fe(OH)2, and finally anionic [Fe(OH)3]-. Electron transfer is considered to be a process of unpairing electrons (without the change of total spin projection Sz) that reveals itself in a substantial spin contamination of the unrestricted solution. The unrestricted orbitals are transformed into localized paired orbitals to determine the orbital channels for a particular electron-transfer state and the weights of idealized charge-transfer and covalent electron structures. This approach allows insight into the electronic structure and bonding of the {Fe(PhNO2)}6 unit (according to Enemark and Feltham notation) to be gained using model nitrobenzene complexes. The electronic structure of this unit can be expressed in terms of pi-type covalent bonding [Fe+2(d6, S = 2) - PhNO2(S = 0)] or charge-transfer configuration [Fe+3(d5, S = 5/2) - {PhNO2}- ((pi*)1, S = 1/2)].  相似文献   
995.
Oxo-hydroxy tautomerism and phototautomerism of 2-quinolinone, 1-isoquinolinone, 3-hydroxyisoquinoline, 2-quinoxalinone, and 4-quinazolinone were studied using the matrix-isolation technique. These compounds contain a benzene ring fused with a heterocyclic ring of 2-pyridinone, 2-pyrazinone, or 4-pyrimidinone. It turned out that direct attachment of a benzene ring to a heterocycle leads to a very pronounced increase of the relative stability of oxo tautomers (in comparison with the tautomerism of the parent compounds 2-pyridinone, 2-pyrazinone, and 4-pyrimidinone). The only exception concerns 3-hydroxyisoquinoline, where fusion with a benzene ring enforces rearrangement of the double- and single-bond system in the oxo tautomer. This destabilizes substantially the oxo form with respect to the hydroxy tautomer. The ratios of population of the oxo and hydroxy tautomers observed in Ar matrixes correspond to the tautomeric equilibria of the compounds in the gas phase. These equilibria were well reproduced by theoretical calculations carried out at the QCISD and QCISD(T) levels. The combined experimental and theoretical results reveal links between aromaticity and tautomerism. Moreover, a UV-induced phototautomeric reaction transforming the oxo forms into the hydroxy tautomers was observed for all (except 3-hydroxyisoquinoline) studied compounds. This photoeffect allowed separation of the IR spectra of the tautomers in question.  相似文献   
996.
Au(III), Co(III) and Rh(III) chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) of the general formulae [M1LCl3], trans-[M2L4Cl2]+, mer-[M2L3Cl3], [M1(LL)Cl2]+, cis-[M2(LL)2Cl2]+, where M1=Au; M2=Co, Rh; L=py; LL=bpy, phen, were studied by 1H--13C HMBC and 1H--15N HMQC/HSQC. The 1H, 13C and 15N coordination shifts (the latter from ca-78 to ca-107 ppm) are discussed in relation to the type of metal, electron configuration, coordination sphere geometry and the type of ligand. The 13C and 15N chemical shifts were also calculated by quantum-chemical NMR methods, which reproduced well the experimental tendencies concerning the coordination sphere geometry and the ligand type.  相似文献   
997.
1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution.  相似文献   
998.
A new nucleophilic catalytic system comprised of dialkylaminopyridine-functionalized mesoporous silica nanosphere (DMAP-MSN) has been synthesized and characterized. We have demonstrated that this material is an efficient heterogeneous catalyst for Baylis-Hillman, acylation, and silylation reactions with good reactivity, product selectivity, and recyclability. We envision that this DMAP-functionalized mesoporous silica material can also serve as an effective heterogeneous catalyst for many other catalytic nucleophilic reactions.  相似文献   
999.
Although the decomposition of water pollutants in the presence of metallic iron is known, the reaction pathways and mechanisms of the decomposition of azo-dyes have been meagerly investigated. The interface phenomena taking place during orange I decomposition have been investigated with the use of infrared external reflection spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The studies presented in this paper establish that there are close relationships between the composition and structure of the iron surface oxidized layers and the kinetics and reaction pathway of orange decomposition. The influence of the molecular structure of azo-dye on the produced intermediates was also studied. There are remarkable differences in orange I decomposition between pH 3 and pH 5 at 30 degrees C. Decomposition at pH 3 is very fast with pseudo-first-order kinetics, whereas at pH 5 the reaction is slower with pseudo-zero-order kinetics. At pH 3, only one amine, namely 1-amino-4-naphthol, was identified as an intermediate that undergoes future decomposition. Sulfanilic acid, the second harmful reduction product, was not found in our studies. At pH 3, the iron surface is covered only by a very thin layer of polymeric Fe(OH)(2) mixed with FeO that ensures orange reduction by a combination of an electron transfer reaction and a catalytic hydrogenation reaction. At pH 5, the iron surface is covered up to a few micrometers thick, with a very spongy and porous layer of lepidocrocite enriched in Fe(2+) ions, which slows the electron transfer process. The fastest decomposition reaction was found at a potential near -300 mV (standard hydrogen electrode). An addition of Fe(2+) ions to solution, iron preoxidation in water, or an increase of temperature all result in an increasing decomposition rate. There is no single surface product that would inhibit the decomposition of orange. This information is crucial to perform efficient, clean and low cost waste water treatment. The findings presented here make the treatment of wastewater in the presence of metallic iron a very promising solution.  相似文献   
1000.
The reaction of B12H11NH3(1−) with carbodiimides can form guanidinium salts containing the boron cluster. Depending on the side chains of the carbodiimide, these derivatives of the B12H12(2−) cluster can be uncharged or can carry an overall positive or negative charge. This reaction allows the preparation of derivatives with aliphatic side chains, in contrast to the acylation reaction of and the formation of Schiff bases, both of which are successful only with aromatic acid chlorides or aromatic, respectively, α,β-unsaturated aldehydes. The acylation of with benzoyl chloride gives an N-protonated form of an imidoacid, carrying a single overall charge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号