首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   29篇
  国内免费   3篇
数理化   655篇
  2024年   3篇
  2023年   5篇
  2022年   10篇
  2021年   30篇
  2020年   22篇
  2019年   20篇
  2018年   22篇
  2017年   23篇
  2016年   30篇
  2015年   27篇
  2014年   26篇
  2013年   62篇
  2012年   48篇
  2011年   39篇
  2010年   29篇
  2009年   37篇
  2008年   35篇
  2007年   26篇
  2006年   27篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   12篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   10篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   3篇
  1963年   1篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
101.
This study describes the application of Raman spectroscopy to the detection of drugs of abuse and noncontrolled substances used in the adulteration of drugs of abuse on human nail. Contamination of the nail may result from handling or abusing these substances. Raman spectra of pure cocaine hydrochloride, a seized street sample of cocaine hydrochloride (77%), and paracetamol could be acquired from drug crystals on the surface of the nail. An added difficulty in the analytical procedure is afforded by the presence of a nail varnish coating the nail fragment. By using confocal Raman spectroscopy, spectra of the drugs under nail varnish could be acquired. Spectra of the drugs could be readily obtained nondestructively within three minutes with little or no sample preparation. Raman spectra could be acquired from drug particles with an average size of 5–20 μm. Acquisition of Raman point maps of crystals from both pure and street samples of cocaine hydrochloride under nail varnish is also reported. Figure Raman spectrum and point Raman map of cocaine HCI  相似文献   
102.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   
103.
104.
105.
This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.  相似文献   
106.
This article is concerned with the existence and robust stability of an equilibrium point that related to interval inertial Cohen–Grossberg neural networks. Such condition requires the existence of an equilibrium point to a given system, so the existence and uniqueness of the equilibrium point are emerged via nonlinear measure method. Furthermore, with the help of Halanay inequality lemma, differential mean value theorem as well as inequality technique, several sufficient criteria are derived to ascertain the robust stability of the equilibrium point for the addressed system. The results obtained in this article will be shown to be new and they can be considered alternative results to previously results. Finally, the effectiveness and computational issues of the two models for the analysis are discussed by two examples. © 2016 Wiley Periodicals, Inc. Complexity 21: 459–469, 2016  相似文献   
107.
108.
A superhydrophobic polystyrene hollow fiber was electrospun around a copper spring collector. This approach led to the construction of a hollow fiber membrane, and the copper spring acted as a scaffold. The characteristic properties of the hollow fiber were studied by scanning electron microscopy. The membrane was used as a probe to transfer the extracting solvent from aquatic media to a gas chromatograph. After performing the liquid–liquid microextraction procedure on 10 mL of water sample by octanol, the whole solution was passed through the prepared polystyrene hollow fiber. Propanol, containing 2 mg/L lindane as the internal standard, was used for desorption and an aliquot of 2 μL of the desorbing solvent was subsequently injected into gas chromatography with mass spectrometry. Effects of different parameters influencing the extraction efficiency were optimized. The limits of detection and quantification were 2 and 6 ng/L, respectively. The relative standard deviations at a concentration level of 100 ng/L were between 2 and 6% (n = 3) while the method linearity ranged from 6 to 200 ng/L. Some real water samples were analyzed by the developed method and relative recoveries were in the range of 76–107%.  相似文献   
109.
Cell-based microfluidic devices have attracted interest for a wide range of applications. While optical cell counting and flow cytometry-type devices have been reported extensively, sensitive and efficient non-optical methods to detect and quantify cells attached over large surface areas within microdevices are generally lacking. We describe an electrical method for counting cells based on the measurement of changes in conductivity of the surrounding medium due to ions released from surface-immobilized cells within a microfluidic channel. Immobilized cells are lysed using a low conductivity, hypotonic media and the resulting change in impedance is measured using surface patterned electrodes to detect and quantify the number of cells. We found that the bulk solution conductance increases linearly with the number of isolated cells contributing to solution ion concentration. The method of cell lysate impedance spectroscopy is sensitive enough to detect 20 cells microL(-1), and offers a simple and efficient method for detecting and enumerating cells within microfluidic devices for many applications including measurement of CD4 cell counts in HIV patients in resource-limited settings. To our knowledge, this is the most sensitive approach using non-optical setups to enumerate immobilized cells. The microfluidic device, capable of isolating specific cell types from a complex bio-fluidic and quantifying cell number, can serve as a single use cartridge for a hand-held instrument to provide simple, fast and affordable cell counting in point-of-care settings.  相似文献   
110.
Calmodulin is an EF hand calcium binding protein. Its binding affinities to various protein/peptide targets often depend on the conformational changes induced by the binding of calcium. One such target is melittin, which binds tightly to calmodulin in the presence of calcium, and inhibits its function. Chemical cross-linking combined with Fourier transform ion cyclotron resonance mass spectrometry has been employed to investigate the coordination of calmodulin and melittin in the complex at different concentrations of calcium. This methodology can be used to monitor structural changes of proteins induced by ligand binding, and study the effects these changes have on non- covalent interactions between proteins. Cross-linking results indicate that the binding place of the first melittin in the calcium free calmodulin form is the same as in the calcium loaded calmodulin/melittin complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号