首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   36篇
  国内免费   2篇
数理化   1578篇
  2022年   11篇
  2021年   14篇
  2020年   16篇
  2019年   18篇
  2018年   12篇
  2016年   31篇
  2015年   19篇
  2014年   26篇
  2013年   66篇
  2012年   73篇
  2011年   84篇
  2010年   43篇
  2009年   46篇
  2008年   68篇
  2007年   79篇
  2006年   76篇
  2005年   70篇
  2004年   54篇
  2003年   48篇
  2002年   51篇
  2001年   43篇
  2000年   21篇
  1999年   15篇
  1998年   24篇
  1997年   13篇
  1996年   19篇
  1995年   23篇
  1994年   39篇
  1993年   19篇
  1992年   25篇
  1991年   16篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   13篇
  1986年   20篇
  1985年   20篇
  1984年   15篇
  1983年   13篇
  1982年   14篇
  1981年   16篇
  1980年   16篇
  1979年   18篇
  1978年   26篇
  1977年   20篇
  1976年   20篇
  1975年   20篇
  1974年   12篇
  1973年   18篇
  1972年   14篇
排序方式: 共有1578条查询结果,搜索用时 0 毫秒
101.
Time-resolved IR emission spectroscopy (TRIES) has been used to study infrared emission in the 3400–3100 cm−1 region from HCN molecules produced when CN radicals abstract a hydrogen atom from ethane, propane, and chloroform. From these observations the nascent vibrational distributions of the HCN produced were derived. The nascent vibrational population distributions of the product HCN in all of the reactions are non-statistical and inverted in both the pure CH stretch (00p) and CH stretch—bend (0np) series.  相似文献   
102.
InI3 is able to catalyze the conversion of methanol to a mixture of hydrocarbons at 200 degrees C with one highly branched alkane, 2,2,3-trimethylbutane (triptane), being obtained in high selectivity. The mechanism for InI3-catalyzed reactions appears to be basically the same as that proposed for the previously studied ZnI2-catalyzed system in which sequential methylation of olefins is followed by competing reactions of the resulting carbocation: proton loss to give the next olefin vs hydride transfer to give the corresponding alkane. Although the reaction conditions and typical triptane yields achievable with ZnI2 and InI3 are quite similar, the two systems behave rather differently in a number of important particulars, including significant differences between the detailed product distributions. Most of the differences in behavior can be ascribed to the stronger Lewis acidity of InI3, including the ability to activate some alkanes, the higher activity for methylation of arenes, and the fact that methanol conversion can be observed at somewhat lower temperatures with InI3 than with ZnI2.  相似文献   
103.
In a previous study, the strength of the interaction between the nuclear stress proteins (sps) 25a, 70i, 72c, and 90 and the tumor suppressor protein p53 was determined by an in vitro fluorescence binding assay. The relative binding of the individual sps with p53, derived from the bone marrow of transgenic mice heterozygous at the p53 locus (p53+/-), was reduced compared to the interaction of sps and p53 derived from wild-type (p53+/+) mice. In order to determine if the genotype of the p53 donor or the genotype of the sp donor determined the binding efficiency, p53 expression was induced by retinoic acid and sp synthesis by bleomycin. P53 derived from either wild-type or heterozygous animals was cross-reacted with nuclear sps obtained from either wild-type or heterozygous animals. Each of the sps, 25a, 70i, 72c, and 90, bound to wild-type p53 with a similar efficiency, irrespective of the genotype of the sp donor mouse (p53+/+ or p53+/-). In contrast, when the sp interaction with p53 obtained from the heterozygous mouse was measured, the relative value of the fluorescence complex was significantly reduced. The data suggest that the strength of the interaction between p53 and nuclear sps is related to the genotype of the p53 donor, and not to the genotype of the animals from which the sps are derived.  相似文献   
104.
105.
Molecular beam scattering experiments and molecular dynamics simulations have been combined to develop an atomic-level understanding of energy transfer, accommodation, and reactions during collisions between gases and model organic surfaces. The work highlighted in this progress report has been motivated by the scientific importance of understanding fundamental interfacial chemical reactions and the relevance of reactions on organic surfaces to many areas of environmental chemistry. The experimental investigations have been accomplished by molecular beam scattering from ω-functionalized self-assembled monolayers (SAMs) on gold. Molecular beams provide a source of reactant molecules with precisely characterized collision energy and flux; SAMs afford control over the order, structure, and chemical nature of the surface. The details of molecular motion that affect energy exchange and scattering have been elucidated through classical-trajectory simulations of the experimental data using potential energy surfaces derived from ab initio calculations. Our investigations began by employing rare-gas scattering to explore how alkanethiol chain length and packing density, terminal group relative mass, orientation, and chemical functionality influence energy transfer and accommodation at organic surfaces. Subsequent studies of small molecule scattering dynamics provided insight into the influence of internal energy, molecular orientation, and gas–surface attractive forces in interfacial energy exchange. Building on the understanding of scattering dynamics in non-reactive systems, our work has recently explored the reaction probabilities and mechanisms for O3 and atomic fluorine in collisions with a variety of functionalized SAM surfaces. Together, this body of work has helped construct a more comprehensive understanding of reaction dynamics at organic surfaces.  相似文献   
106.
Nonaqueous diazotization-dediazoniation of two types of aminopurine nucleoside derivatives has been investigated. Treatment of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-2-amino-6-chloropurine (1) with SbCl(3)/CH(2)Cl(2) was examined with benzyltriethylammonium (BTEA) chloride as a soluble halide source and tert-butyl nitrite (TBN) or sodium nitrite as the diazotization reagent. Optimized yields (>80%) of the 2,6-dichloropurine derivative were obtained with SbCl(3). Combinations with SbBr(3)/CH(2)Br(2) gave the 2-bromo-6-chloropurine product (>60%), and SbI(3)/CH(2)I(2)/THF gave the 2-iodo-6-chloropurine derivative (>45%). Antimony trihalide catalysis was highly beneficial. Mixed combinations (SbX(3)/CH(2)X'(2); X/X' = Br/Cl) gave mixtures of 2-(bromo, chloro, and hydro)-6-chloropurine derivatives that were dependent on reaction conditions. Addition of iodoacetic acid (IAA) resulted in diversion of purine radical species into a 2-iodo-6-chloropurine derivative with commensurate loss of other radical-derived products. This allowed evaluation of the efficiency of SbX(3)-promoted cation-derived dediazoniations relative to radical-derived reactions. Efficient conversions of adenosine, 2'-deoxyadenosine, and related adenine nucleosides into 6-halopurine derivatives of current interest were developed with analogous combinations.  相似文献   
107.
Stereoselective pyramidalization of free radicals by a vicinal fluorine substituent, the beta-fluorine effect, was invoked to rationalize a 77:23 anti/syn ratio of 2-deuterio-1-fluorocyclopentanes obtained by radical reduction of trans-2-fluoro-1-bromocyclopentane with tributyltin deuteride (Dolbier, W. R., Jr.; Bartberger, M. D. J. Org. Chem. 1995, 60, 4984-4985). We have evaluated analogous reductions of the four possible stereoisomers of some adenine 2'(3')-fluoro-3'(2')-O-phenoxythiocarbonyl nucleoside derivatives. In all cases, the steric effect of adenine on the beta face directs deuterium transfer from the stannane to C2'(C3') on the alpha face of the furanose ring. However, the beta-fluorine effect enhances ratios of deuterium transfer anti to the vicinal fluorine substituent.  相似文献   
108.
Thermolysis of a 2'-[(16)O]-O-benzoyl-[(17)O]-5'-O-(tert-butyldimethylsilyl)-O(2),3'-cyclouridine derivative gave the more stable 3'-[(17)O]-O-benzoyl-[(16)O]- 5'-O-(tert-butyldimethylsilyl)-O(2),2'-cyclouridine isomer, which was converted into 3'-[(17)O]-2'-azido-2'-deoxyuridine by deprotection and nucleophilic ring opening at C2' with lithium azide. The 5'-diphosphate was prepared by nucleophilic displacement of the 5'-O-tosyl group with tris(tetrabutylammonium) hydrogen pyrophosphate. Model reactions gave (16)O and (18)O isotopomers, and base-promoted hydrolysis of an O(2),2'-cyclonucleoside gave stereodefined access to 3'-[(18)O]-1-(beta-D-arabinofuranosyl)uracil. Inactivation of ribonucleoside diphosphate reductase with 2'-azido-2'-deoxynucleotides results in appearance of EPR signals for a nitrogen-centered radical derived from azide, and 3'-[(17)O]-2'-azido-2'-deoxyuridine 5'-diphosphate provides an isotopomer to perturb EPR spectra in a predictable manner.  相似文献   
109.
Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering   总被引:3,自引:0,他引:3  
Research into nanoenergetic materials is enabling new capabilities for controlling exothermic reaction rates and energy output, as well as new methods for integrating these materials with conventional electronics fabrication techniques. Many reactions produce primarily heat, and in some cases it is desirable to increase the rate of heat release beyond what is typically observed. Here we investigate the Al-Ni intermetallic reaction, which normally propagates across films or foils at rates lower than 10 m/s. However, models and experiments indicate that local heating rates can be very high (107 K/s), and uniform heating of such a multilayer film can lead to a rapid, thermally explosive type of reaction. With the hopes of using a device to transduce electrical energy to kinetic energy of a flyer plate in the timescale of 100's of nanoseconds, we have incorporated a Ni/Al nanolayer film that locally heats upon application of a large electrical current. We observed flyer plate velocities in the 2-6 km/s range, corresponding to 4-36 kJ/g in terms of specific kinetic energy. Several samples containing Ni/Al films with different bilayer thicknesses were tested, and many produced additional kinetic energy in the 1.1-2.3 kJ/g range, as would be expected from the Ni-Al intermetallic reaction. These results provide evidence that nanoscale Ni/Al layers reacted in the timescale necessary to contribute to device output.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号