首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   26篇
数理化   43篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2001年   5篇
  2000年   1篇
  1997年   3篇
  1995年   2篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
11.
近年来,环境污染与能源短缺已经成为人类需解决的问题,因此新型绿色能源的开发显得尤为重要.在众多新型能源当中,太阳能由于其安全无害、无二次污染、应用前景广泛等优点而备受关注.半导体光催化技术作为一项可以直接将太阳能转化为化学能的新兴技术,可以有效地利用太阳光实现环境治理和能源转化的目的,已被应用于光催化分解水、光催化合成氨、光催化二氧化碳还原以及光催化降解有机污染物等不同研究领域.然而传统的光催化剂材料TiO_2对太阳光的利用效率较低,大大限制了光催化技术的广泛应用.因此,研发新型高效光催化半导体材料成为人们的研究热点.相比于普通的体材料,低维和小尺寸纳米材料往往具备更为优良的物化特性.一维尺寸的三元钒酸盐材料作为一类极具前景的多功能纳米材料,在光学设备、光催化降解、电极材料以及电化学传感器等诸多领域都具有广泛应用.其中,钒酸铁材料作为钒酸盐系列中的一员,其有着合适的带隙且能响应可见光,是一种具有研究前景的光催化材料.三斜相的钒酸铁具有层状结构,这有利于光生载流子在层间进行有效的分离和迁移,从而提高光催化降解性能.同时,离子液体作为一种结构高度可调的绿色有机盐,在微纳米材料的可控制备方面起着关键作用.本文选取1-辛基-3-甲基咪唑氯盐作为反应铁源,利用离子液体辅助溶剂热法合成了钒酸铁前驱体材料FeVO_4·1.1H_2O.通过调控煅烧温度,可控制备了尺寸均一的介孔钒酸铁纳米棒材料.同时,选取无机盐氯化铁作反应铁源制备了钒酸铁纳米棒作为对比.根据X射线粉末衍射图谱可知,当煅烧温度升到400°C时,前驱体材料的晶相转变为过渡相;当煅烧温度升到500°C时,出现了清晰的归属于钒酸铁的特征衍射峰,表明钒酸铁结构形成.从扫描电镜图可以清楚地观察到所制备的前驱体材料为结构均一且表面光滑的纳米棒结构,其长度为2–3μm.经过煅烧处理后,在钒酸铁纳米棒表面形成孔径为5–20 nm的介孔结构,这可能是由于煅烧过程中前驱体材料发生脱水重结晶.结合X射线衍射图谱,确定了介孔钒酸铁纳米棒的形成过程.此外,通过氮气吸附-脱附等温线得到了介孔钒酸铁材料的比表面积.在光催化降解过程中,大的催化剂比表面积可以为反应基质提供充分的吸附位点和反应活性位点,从而有利于提高光催化反应活性.选取抗生素四环素作为目标污染物分别考察了在无机盐(FeVO_4-FC)和离子液体(FeVO_4-IL)条件下制备的钒酸铁材料的催化性能.其中,四环素的自降解作用可以忽略.在加入H_2O_2光照120 min后,FeVO_4-IL表现出比Fe VO_4-FC更高的光催化性能.此外,采用染料罗丹明B进一步确定所制备材料的光催化性能.结果表明,在相同的光照时间后,FeVO_4-IL有着更高的催化降解活性.对介孔纳米棒进行了稳定性测试,在四次循环后,未发现其光催化活性有明显降低,其结构也保持不变.电化学阻抗测试结果显示,相比于FeVO_4-FC材料,FeVO_4-IL有着更小的阻值,表明离子液体可控合成的介孔纳米棒材料更有利于光生电荷的传输,从而增强了光催化降解活性.基于一系列表征结果,我们提出了多孔钒酸铁纳米棒可能的光催化降解机制.  相似文献   
12.
13.
14.
李华明  叶兴凯 《分子催化》1997,11(4):253-257
考察了在乙腈酸性水溶液中Pd(OAc)2/氢酯(HQ)/酞青铁(FePc)和Pd(OAc)/FePc对环已烯、环戊烯、苯乙烯、正癸烯氧化合成相应酮的催化活性,实验结果表明,两类催化体系对环戊烯的酮基化呈现出较高的催化活性,环戊酮收率可达98%,在其它烯烃的氧化反应中,三元催化体系Pd(OAc)2/HQ/FePc的催化活性刘于二元的Pd(OAc)2/FePc。这表明,在Wacker类催化体系中,电子  相似文献   
15.
温和条件下,燃油深度脱硫一直是非常重要的研究课题.目前,加氢脱硫(HDS)是石油工业上广泛采用的脱硫技术,它能够有效脱除燃油中的硫醚、硫醇和等无机硫化物,但对于芳香族硫化物(如二苯并噻吩、4,6-二甲基二苯并噻吩等),则效果较差.对于上述有机硫化物的深度脱除,现有的加氢脱硫技术需要更为苛刻的反应条件,如高温、高压、高活性贵金属催化剂等,这势必导致燃油成本的大幅上升.因此,世界各国科学家都加强了高效非加氢脱硫方法的研究,主要包括氧化脱硫法、吸附脱硫法、萃取脱硫法和生物脱硫法等,其中氧化脱硫法是一种公认的具有应用前景的高效脱硫技术,该技术只需在常温常压下进行,可将含硫化合物氧化成其相应的砜类物质后,再用溶剂萃取法或吸附法除去.氧化脱硫反应中所涉及氧化剂有过氧化氢、有机过氧化物和氧气等.在这些氧化剂中,过氧化氢由于其活性高,在氧化反应后的副产物只有水,而被广泛研究.
  离子液体作为一种低温熔融盐,因其独特的理化性质,如无蒸气压、低毒性、良好的溶解性以及结构可调等,受到了广泛的关注.其中,功能化多酸基离子液体不仅具备离子液体的特点,还具备多金属氧酸盐的优势,已被用于燃油的均相氧化脱硫过程中.但是,此过程中离子液体往往用量较大,催化剂难于回收和循环利用,氧化剂用量较大,阻碍其在工业中的应用.为了克服上述缺点,本课题组以多酸基离子液体[C16mim]3PW12O40和正硅酸四乙酯为原料通过溶胶-凝胶法直接合成了一系列含钨功能化介孔复合材料 W-SiO2,其中咪唑型阳离子作为介孔模板剂,而多酸阴离子作为金属源.采用 XRD, IR, Raman, BET, DRS, TEM等测试手段对所合成的材料进行了表征.结果表明,钨活性物种是以氧化钨的形式存在,并且能够均匀地分散在载体二氧化硅上,所合成的材料比表面积为513–743 m2/g,孔体积为0.37–0.50 cm3/g,孔径为2.91–3.20 nm.将所合成的材料 W-SiO2-20应用于燃油氧化脱硫反应(过程中无需有机溶剂),结果表明,所合成的复合材料既能作为吸附剂来吸附有机硫化物,又能作为催化剂来活化过氧化氢以氧化有机硫化物.在最优条件(反应温度60oC, O/S摩尔比为2.5,反应时间40 min)下,二苯并噻吩脱除率可100%,而且反应体系易于循环使用,7次循环后脱硫率无明显降低.此外,还考察了复合材料在相同条件下对于不同硫化物的脱除效果,结果表明,反应活性顺序为4,6-DMDBT> DBT> BT> DT.  相似文献   
16.
合成了一种含D,L-丙氨酸配体的钨的过氧配合物WO(O2)2·2C3H7NO2·H2O催化剂.以WO(O2)2·2C3H7NO2·H2O/[Bmim]PF6/H2O2体系为研究模型,考察了反应时间、温度和催化剂用量等因素对燃油脱硫率的影响.结果表明,在70℃反应2h,n(H2O2)∶n(二苯并噻吩)∶n(催化剂)=30...  相似文献   
17.
采用静电组装技术,将离子液体[Bmim]PF6与辣根过氧化物酶(HRP)交替固定在巯基乙酸修饰的金电极表面,制备了(HRP/[Bmim]PF6)n多层组装膜,并通过电化学阻抗谱(EIS)和傅立叶红外反射光谱(ATR-FTIR)对制备的组装膜进行了表征.以对苯二酚为电子媒介体,过氧化氢在(HRP/[Bmim]PF6)2双层组装膜传感器上的线性范围为1.6×10-6 ~2.5×10-3 mol/L,检出限为5.7×10-7 mol/L(S/N=3),达到95%稳态电流用时少于5 s,Kappm值为0.048 mmol/L,表明所固定的酶具有较高的生物活性.  相似文献   
18.
无机-有机杂多盐[Bmim]5PMo10V2O40的制备及电催化性能   总被引:1,自引:1,他引:0  
磷钼钒杂多酸盐;无机-有机杂化;碳糊修饰电极;电催化  相似文献   
19.
在乙腈酸性水溶液中,不同来源酞菁铁(FePc)和Pd(OAc)2/HQ(氢醌)组成的催化体系在环己烯氧化反应中有明显不同的催化活性.通过IR、Mssbauer、XPS、XRD、SEM、BET等技术对酞菁铁的分析表明,由酞菁铁组成的多组份催化体系的催化活性与酞菁铁中的飒 氧酞菁铁含量、酞菁铁结晶度和表面形态有关.  相似文献   
20.
Pd(OAc)2/HQ/FePc催化环己烯氧化合成环己酮反应机理   总被引:4,自引:0,他引:4  
在醋酸钯[Pd(OAc)2]/氢醌(HQ)/酞菁铁(FePc)催化环己烯氧化合成环己酮反应中,应用XPS、UV-Vis,IR和循环伏安法考察了经剂各组分在反应前后存在状态,以及Pd(OAc)2,Pd(OAc)2/BQ(苯醌)对环己烯的作用,FePc对HQ的催化氧化,讨论了Pd(OAc)2/HQ/FePc催化环己烯氧化合成环己酮的作用机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号