首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  国内免费   114篇
数理化   201篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   11篇
  2009年   16篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   10篇
  2000年   14篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   1篇
  1992年   7篇
  1990年   3篇
排序方式: 共有201条查询结果,搜索用时 62 毫秒
91.
以NaOH为沉淀剂,采用共沉淀法制备尖晶石LiNi0.5Mn1.5O4正极材料,使用X-射线衍射(XRD)、傅里叶转换红外光谱(FTIR)和扫描电镜(SEM)分析材料结构与表面形貌. 结果表明,该材料属于空间群的无序尖晶石LiNi0.5Mn1.5O4材料,由八面体粒子团聚成3 ~ 6 μm的大粒子. 恒电流充放电结果显示,材料在0.1C倍率下首周放电比容量为121.5 mAh·g-1,经过150周充放电后,材料比容量无明显衰减,其容量保持率为99%. 用PITT和原位XRD联用技术研究了充放电过程中材料的结构与锂离子扩散系数之间的关系. PITT法测得材料中锂离子的扩散系数为10-10 ~ 10-11 cm2·s-1.  相似文献   
92.
以氯化胆碱/尿素低共熔溶剂为介质通过恒电位沉积法成功制备了形状和尺寸均一的橄榄状镧粒子. 采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDX)和X射线光电子能谱(XPS)等技术对所制备的样品进行表征. 同时,研究了沉积电位、温度和时间等因素对样品尺寸、形貌的影响,确定恒电位法制备橄榄状镧粒子的优化工艺条件为沉积电位-1.7 V、温度80 oC和沉积时间15 min.  相似文献   
93.
以氢气泡为动力学模板电沉积获得多孔铜,并通过热处理增强其结构稳定性.进一步将多孔铜作为基底通过电沉积制备Cu-Sn合金负极.XRD结果给出其组成为Cu6Sn5合金,扫描电子显微镜(SEM)观察到Cu6Sn5合金电极为三维(3D)多孔结构.充放电结果指出,Cu6Sn5合金电极具有较好的充放电性能,其首次放电(嵌锂)和充电(脱锂)容量分别为735和571 mAh·g-1,并且具有较好的容量保持率.运用电化学阻抗谱研究了Cu6Sn5合金电极在商业电解液中的界面特性.  相似文献   
94.
应用电沉积技术制备了Fe-P合金电极材料。采用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了该合金材料的相结构和表面形貌。XRD分析结果表明电沉积的Fe-P合金具有非晶态结构。电化学性能测试表明:平面结构的Fe-P合金电极首次放电(脱锂)容量达542 mAh·g-1,首次循环的库仑效率为60%;50周循环之后放电容量为366 mAh·g-1。用非原位的XRD和SEM对电极的充放电机理进行了初步研究,结果表明,首次充电(嵌锂)过程中形成Li3P相,电极表面生成纳米棒结构铁-磷合金,它能有效缓解锂嵌入/脱出时引起的合金结构变化,抑制合金材料的体积膨胀,从而提高该合金电极的充放电效率和循环性能。  相似文献   
95.
尖晶石LiMn2O4中锂离子嵌入脱出过程的电化学阻抗谱研究   总被引:1,自引:0,他引:1  
庄全超  魏涛  魏国祯  董全峰  孙世刚 《化学学报》2009,67(19):2184-2192
运用电化学阻抗谱(EIS)研究了尖晶石LiMn2O4电极的首次充放电过程. 发现EIS谱高频区域拉长压扁的半圆是由两个半圆相互重叠而成的, 分别归属于与锂离子通过固体电解质相界面膜(SEI膜)的迁移和与尖晶石LiMn2O4材料的电子电导率相关的特征. 通过选取适当的等效电路, 对实验所得的电化学阻抗谱数据进行拟合, 获得尖晶石LiMn2O4电极首次充放电过程中SEI膜电阻、电子电阻和电荷传递电阻等随电极极化电位变化的规律. 根据研究结果提出了嵌锂物理机制模型.  相似文献   
96.
以粗糙铜箔为基底, 采用一步电沉积法获得Cu-Sn合金, X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相. 扫描电子显微镜(SEM)测试结果表明该合金表面由大量“小岛”组成, 且每个“小岛”上存在大量纳米合金粒子. 充放电测试结果表明, 以该合金为锂离子电池负极, 其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh•g-1. 电化学阻抗谱测试结果显示, Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧, 并详细分析了它们的变化规律.  相似文献   
97.
以四氯化钛为前驱体,采用水热法合成二氧化钛纳米棒(TiO2,白色),在纯H2气氛,将其550 oC热处理2 h,即得有氧缺陷和Ti3+填隙原子的二氧化钛纳米棒(H-TiO2,灰黑色). 将Pt纳米粒子(~ 1.9 nm)负载于此两种二氧化钛纳米棒上,制得Pt/TiO2和Pt/H-TiO2催化剂. XRD和XPS测试表明,氢处理TiO2晶型没有变化,仍属金红石型,但增加了Ti-OH表面物种. 电化学测试表明,H-TiO2载体能够增强氧在Pt表面的吸脱附能力,从而提高其甲醇电催化氧化活性,Pt/H-TiO2电极甲醇氧化峰电流密度为Pt/TiO2电极的1.6倍、Pt/C电极的2.1倍.  相似文献   
98.
运用循环伏安电沉积在玻碳基底上制得纳米结构钴铂合金薄膜,扫描电子显微镜和X-射线能量散射谱研究表明,钴铂薄膜主要由平均粒经为139 nm的纳米粒子组成,钴和铂的原子比为3:5. 以CO为探针分子,电化学原位FTIR反射光谱研究发现钴铂薄膜具有异常红外效应. 吸附态CO发生异常红外吸收,谱峰比本体钴和铂分别增强了34和43倍.  相似文献   
99.
碳化钼具有低廉的价格、优越的催化性能以及良好的稳定性而被人们认为是极好的可以替代Pt等贵金属的氢析出反应(HER)催化剂。本工作采用钼酸钠和2,6-二氨基吡啶为反应原料,之后不断进行盐封的过程直到前驱体被紧紧包覆在NaCl的晶格中,最后置于惰性气氛下煅烧即可制得盐封后碳化钼。本工作采用了扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散x射线光谱(EDS)、X射线衍射(XRD)以及X射线光电子能谱(XPS)等技术对盐封后碳化钼的形貌、组成以及晶体结构进行了表征。结果表明盐封后的产物形貌并不均一,其中包括纳米颗粒及纳米棒。比较Mo_2C/SS与Mo_2C的TEM图,可以发现盐封后Mo_2C的尺寸变小,表明盐封的方法可以有效地避免颗粒的团聚。根据产物的氮气吸脱附等温线得到的催化剂的Brunauer-Emmett-Teller (BET)比表面积,盐封后Mo_2C的BET表面积由2.55提高至8.14 m~2·g~(-1),可以证明盐封过程中孔的生成。EDS、XRD及XPS分析的结果表明盐封后的产物是斜方晶系的Mo_2C,并且表面由于被氧气氧化而带有氧化钼。结合XPS和周转率(TOF)数计算的结果,可以说明盐封过程中孔的形成有助于暴露更多活性位点,然而同时也扩大了与氧气的接触面积,催化剂表面形成的氧化钼的含量也增多。因此,催化剂表面活性中心即碳化钼所占的比例降低。另一方面,氧化钼的法拉第反应产生的赝电容会与碳化钼催化剂的双电层电容叠加,导致得到的比容量数值偏大。而氧化钼的赝电容效应对Mo_2C/SS催化剂的影响是更显著的,因此盐封后的TOF数降低。同Mo_2C相比,Mo_2C/SS展现出更高的HER质量活性的原因可归结如下:(1)盐封过程中大量孔的形成有助于提高产物的BET表面积并暴露出更多的活性位点;(2)盐封后的多孔结构和较大的表面积有利于传质传荷;(3)盐封后碳化钼的Tafel斜率由145降至88mV·dec-1。总的来说,盐封后碳化钼的HER活性有了明显的提高,当电流密度达到10 mA·cm-2时,过电位为175 mV左右。盐封后碳化钼的Tafel斜率为88 mV·dec-1,证明催化剂表面发生的氢析出反应遵循Volmer-Heyrovsky机理并以电化学脱附步骤为反应的速控步骤。  相似文献   
100.
王洁莹  陈燕鑫  陈声培  王鹏  孙世刚 《应用化学》2010,27(11):1296-1300
通过循环伏安法(CV)在玻碳(GC)电极表面电沉积出分布较为均匀的纳米Fe粒子,制得纳米Fe粒子修饰的GC(纳米Fe/GC)电极,再经“电荷置换”制得具有Fe核Pt壳结构的纳米粒子修饰的(纳米PtFe/GC)电极。 SEM结果显示,纳米Fe/GC和纳米PtFe/GC表面粒子的形貌均呈立方体形,分布较为均匀,粒径在60 nm左右。 纳米PtFe/GC电极对亚硝酸盐的还原具有很高的电催化活性。 3种电极的电催化活性顺序依次为:纳米Fe/GC<纳米Pt/GC<纳米PtFe/GC。 相对于纳米Pt/GC电极,纳米PtFe/GC电极的起始还原电位(Ei)正移了0.14 V,还原峰电流(ip)增大了3倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号