首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   44篇
  国内免费   448篇
环境安全   1503篇
  2023年   20篇
  2022年   44篇
  2021年   40篇
  2020年   39篇
  2019年   31篇
  2018年   35篇
  2017年   38篇
  2016年   54篇
  2015年   63篇
  2014年   95篇
  2013年   96篇
  2012年   84篇
  2011年   94篇
  2010年   76篇
  2009年   77篇
  2008年   101篇
  2007年   49篇
  2006年   60篇
  2005年   36篇
  2004年   35篇
  2003年   44篇
  2002年   51篇
  2001年   30篇
  2000年   31篇
  1999年   29篇
  1998年   36篇
  1997年   24篇
  1996年   30篇
  1995年   19篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
排序方式: 共有1503条查询结果,搜索用时 15 毫秒
991.
利用江西省大量岩石类型和食管癌死亡调查资料,对食管癌死亡率与人群生存区岩石类型的相关性进行了研究。结果表明,江西省食管癌死亡率与岩石类型密切相关。食管癌死亡率与变质岩、碳酸盐岩、第四系松散岩、红色碎屑岩呈正相关,与岩浆岩呈负相关,与碎屑岩相关不显著。  相似文献   
992.
介绍了两公司大豆蛋白废水的水质水量和性质特征,分析工程的工艺设计和调试运行状况.对大豆蛋白和屠宰废水的处理,采用混和处理的总体工艺,理论研究和运行实践表明,混和处理利于均衡生物处理营养,优化厌氧处理工艺型式及参数.污泥培养时,尽快从间歇运行变为连续运行,利于基质和污泥的混和接触,促进油脂和脂肪酸的降解,防止油和脂肪酸的积累及其抑制作用,防止油脂包覆污泥,造成污泥漂浮流失.  相似文献   
993.
本试验以盆栽方式,设置施不同形态的肥料共10个处理,以菜心为供试作物.测定土壤pH值、菜心产量、菜心植株的含镉量.试验结果表明:(1)10个处理对菜心的产量无显著影响;(2)土壤的pH值与植物的吸镉量呈负相关;土壤的pH值与所施肥料的形态有关,硝态氮肥可以减少植物的吸镉量,铵态氮肥也有一定的效果,硫酸铵则增加植物的吸镉量;磷肥、钾肥效果不显著,不同形态肥料之间的差异未达到显著水平;(3)有机复合肥对减少植物的吸镉量有一定的作用.  相似文献   
994.
固定化微生物技术是一种有效的废水生物处理技术.较为全面地介绍了其定义、分类及载体选择.全面系统地介绍了固定化微生物(主要是菌类和藻类)技术近年来在重金属废水处理中的应用现状,分析认为,固定化微生物技术对于处理含各种重金属离子的废水均有很广阔的应用前景,并对今后的研究方向做了探讨.  相似文献   
995.
通过系统整理分析自然资源、水利、生态环境等部门已有地下水监测网,针对广东地下水监测存在的问题和未来地下水环境管理需求,提出较大空间尺度和水质监控的地下水环境监测网建设框架及广东省"三层七级"共237个网点的层级化地下水环境监测网建设方案,并与水文地质单元、浅层地下水功能区划进行了空间叠加分析。结果表明,广东省三大部门监测网在空间上分布总体较为分散,相互补充性好,提出的监测网方案总体上与广东省地下水本底条件、地下水资源开发利用现状、地下水环境功能分区、重点污染源空间分布特征等相匹配,契合地下水饮用水源保护和重点污染源监控两大管理需求,构建的地下水环境监测网框架可为其他地区提供参考,提出的地下水环境监测网建设方案可为广东省地下水环境管理和污染防控提供决策支持。  相似文献   
996.
复合表面活性剂对燃煤陶瓷窑炉黑烟润湿作用的研究   总被引:1,自引:0,他引:1  
为了有效控制燃煤陶瓷窑炉黑烟的污染,根据理论和实验研究的结果,选择合适的润湿剂和助剂,研究了阴离子表面活性剂Y1、非离子表面活性剂F1与无机盐Z1复配后溶液表面张力的变化,筛选出了表面张力较小的配比。利用所选配比对燃煤陶瓷窑炉黑烟的润湿作用进行了Walker实验研究和理论分析。实验结果表明,0.5mmol/L Y1+50mmol/L Z1+0.03mmol/L F1的配比对黑烟的润湿作用较好。并对其润湿机理进行了探讨。  相似文献   
997.
Optical gas imaging (OGI) is an effective tool for detecting gas leaks from process equipment. Despite the fact that OGI has been used for leak detection for over a decade, its detection limit is an elusive performance metric and has not been systematically characterized and quantified like other detection instruments. A substantial body of research has been performed that has shed some light on the OGI detection limits and the factors that dictate the detection limits. The OGI detection limit expressed as ppm-m and ppm now can be quantified as a function of ΔT (differential temperature between the gas plume and the background), the OGI camera type, and the specific gas in question. Furthermore, the OGI detection limit expressed as grams per hour can be calculated based on the ΔT and the distance from the OGI camera to the leak location under common leak survey conditions. For the same OGI camera, the detection limit can vary by several orders of magnitude due to ΔT and distance. The present work has demonstrated how different OGI detection limits can be. More importantly, this work has, for the first time, formulated equations that can be used to determine OGI detection limits with a given set of leak detection conditions. Being able to quantify OGI detection limit and understand the variables that dictate the detection limit is a significant advancement. It will help OGI to become accepted as a mature field instrument. The variables characterized in this work should have an impact on the development of OGI leak survey protocols, such as Appendix K to Code of Federal Regulations 40 CFR Part 60 in the United States. Established detection limits will also help emission inventory for fugitive emissions when OGI is used as the sole leak detection method.

Implications: Optical gas imaging (OGI) has been used for leak detection and control of fugitive volatile organic compound (VOC) emissions and methane emissions due to equipment leaks. However, detection limits of OGI have not been characterized and quantified like other detection instruments. The lack of well-understood detection limits has hindered broader applications of OGI. The work presented in this paper represents important steps that will enable OGI users and policymakers to establish (1) OGI detection limits under various conditions, (2) OGI leak survey criteria for a desired minimum detectable leak size, and (3) maximum potential emissions from the nondetect sources in emission inventory studies.  相似文献   

998.
Cui H  Hwang HM  Cook S  Zeng K 《Chemosphere》2001,44(4):621-625
The effect of riboflavin (1 microM) on the fate of TNT (20 mg/l) in a natural water environment was studied. The relative contribution of photolysis, microbial assemblages and freshwater matrix to TNT degradation was examined. The rates, extent and products of TNT and riboflavin transformation were compared under different experimental conditions. It was found that riboflavin significantly enhanced the degradation of TNT in natural water environment. Thus it is a potentially useful photosensitizing agent for the treatment of TNT-contaminated surface water. Furthermore, in the presence of riboflavin, two new intermediates with max. absorption wavelength of 230 nm were found, demonstrating that transformation of TNT in the presence of riboflavin undergoes different pathways.  相似文献   
999.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   
1000.
In enhanced biological phosphorus removal (EBPR) systems, polyphosphate-accumulating organisms (PAOs) are primarily responsible for removing phosphate from wastewater. Propionate is an abundant carbon substrate in many EBPR plants and has been suggested to provide PAOs an advantage over their carbon competitors--the glycogen-accumulating organisms (GAOs). The aerobic metabolism of PAOs enriched with a propionate carbon source is studied in this paper. A metabolic model is proposed and experimentally validated to characterize the aerobic biochemical transformations by PAOs. The model predicts very well the experimental data obtained from the enriched PAO culture through solid-, liquid-, and gas-phase analyses. This model may be combined with previously formulated metabolic models to better describe the biochemical activity of PAOs with acetate and propionate as the primary carbon sources. Furthermore, it can also facilitate the study of the effect of different carbon sources on PAO-GAO competition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号