首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
环境安全   30篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2015年   4篇
  2013年   1篇
  2008年   1篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
文章研究大气过氧乙酰硝酸酯(PAN)浓度变化特征,为评估光化学污染提供依据。采用PAN在线监测仪对合肥市2016年夏季和冬季大气PAN浓度进行监测。结果显示,夏季和冬季PAN平均浓度分别为1.101和0.962 nmol/mol,属于夏高冬低现象;夏季PAN日变化规律显著,而冬季日变化规律不明显;夏季PAN与臭氧(O3)变化规律相似,但两者浓度呈现一定非线性关系。由以上结果可知,夏季和冬季PAN污染特征存在较大差异,需综合考虑PAN和O3浓度变化才能更准确的评估光化学污染程度。  相似文献   
22.
基于2021年12月1日-2022年2月28日合肥市细颗粒物(PM_(2.5))及其水溶性离子连续观测数据,分析了合肥市冬季PM_(2.5)中水溶性离子化学特征以及不同污染程度下水溶性离子化学特征。结果表明:采样期间合肥市PM_(2.5)污染较重,不同污染程度下PM_(2.5)浓度差异较大,中度及以上污染天的ρ(PM_(2.5))平均值分别是清洁天和轻度污染天的2.8和1.3倍。二次水溶性无机离子[硝酸根离子(NO_(3)^(-))、铵根离子(NH+4)和硫酸根离子(SO_(2)-4),简称SNA]是合肥市PM_(2.5)的重要组成部分,随着污染程度的加重,PM_(2.5)二次生成比例随之下降。NH+4是合肥市水溶性离子中中和能力最强的离子,易与NO_(3)^(-)和SO_(2)-4结合分别形成NH_(4)NO_(3)和(NH_(4))_(2)SO_(4)。合肥市SO_(2)和NO_(2)均易发生二次转化,且SO_(2)较NO_(2)更容易发生二次转化。钙离子(Ca^(2+))和镁离子(Mg^(2+))相关性较高,说明合肥市PM_(2.5)可能受扬尘影响较大;钾离子(K^(+))是生物质燃烧的指示离子,氯离子(Cl^(-))与K^(+)相关性较好,说明合肥市PM_(2.5)组分中的Cl^(-)和K^(+)主要来自生物质燃烧。PM_(2.5)中水溶性离子受降水和温度影响较大。  相似文献   
23.
安徽省淮河流域2003年7月汛期污染规律分析   总被引:1,自引:0,他引:1  
通过对安徽省辖淮河流域 7月份汛期的水质监测结果进行主要污染物浓度及流量之间的变化趋势初步分析 ,结果表明 ,汛期淮河流域整体水质状况有所改善 ;干流污染物浓度与流量存在相关。汛早期受面源污染影响较为明显 ,中、后期受点源污染为主 ;支流污染物浓度与流量之间相关不显著 ,主要受点源排污影响。  相似文献   
24.
为了解单次降水总量、降水时长、降水前颗粒物质量浓度对颗粒物清除能力的影响,对江淮地区2017年气象资料与颗粒物质量浓度资料展开分析.分析江淮地区2017年ρ(PM2.5)、ρ(PM10)及降水特征,综合对比各季节不同单次降水总量对颗粒物的清除能力,对比不同季节、不同降水时段对颗粒物清除能力的变化特征,以及不同季节降水前颗粒物质量浓度与清除率对应阈值关系.研究表明:江淮地区北部颗粒物质量浓度高于南部,南部单次降水总量和降水总时长较北部高.单次降水总量越大对颗粒物的清除率越高.当单次降水总量大于1.5 mm时,清除率提升最明显,并且秋、冬两季清除率高于春、夏两季;当单次降水总量低于1.5 mm时,春、夏两季清除率高于秋、冬两季.总体上,降水对PM10的清除率高于对PM2.5.降水时长对颗粒物的清除率具有明显的季节性变化特征.春、秋两季存在降水时长阈值,分别为10和20 h.春季低于该阈值(10 h)清除率为正清除率,高于该阈值清除率为负清除率;秋季低于该阈值(20 h)清除率为负清除率,高于该阈值为正清除率.夏、冬两季总体表现为正清除率.分析降水前颗粒物质量浓度对清除率的影响得知,降水对PM2.5清除率由负转正的阈值较PM10低,并且冬、春两季清除率阈值较夏、秋两季高,春季、夏季、秋季、冬季的ρ(PM2.5)清除率阈值分别为35、15、25、30 μg/m3,ρ(PM10)清除率阈值分别为60、50、60、60 μg/m3.单次降水过程中颗粒物所处高度由2 200 m降至1 000 m,并且此次降水对非球形粒子清除效果明显,粒径在2.5 μm以下粒子质量浓度显著下降,其中,粒径在0.7~1.2和1.5~2.5 μm粒子数浓度下降明显;另外,降水对颗粒物中NO3-和NH4+去除明显,并且降水后光学EC、光学OC及金属元素质量浓度和占比显著增长.研究显示,当冬季单次降水总量大于1.5 mm,降水前ρ(PM2.5)大于30 μg/m3、ρ(PM10)大于60 μg/m3时颗粒物的清除率最佳.   相似文献   
25.
于2016年12月30日—2017年2月4日,利用单颗粒气溶胶飞行时间质谱仪(SPAMS),对合肥市PM_(2.5)开展来源解析连续监测,共捕捉到4次较为明显的灰霾过程,对颗粒物种类及质谱特征进行了分析。结果显示,监测期间合肥市主要颗粒物成分为元素碳(EC)(31. 9%)、富钾(K)(16. 6%)、有机碳(OC)(16. 0%)及混合碳颗粒(ECOC)(15. 0%)等。主要污染源为机动车尾气源(24. 5%)、工业工艺源(22. 7%)、燃煤源(14. 1%)、二次无机源(13. 5%)等。污染天气发生时,工业工艺源占比上升2. 2个百分点,生物质燃烧和燃煤源占比分别下降1. 7和2. 7个百分点,机动车尾气和扬尘源基本持平,表明此次污染过程主要受到工业工艺源的累积影响。  相似文献   
26.
综合前后向轨迹聚类分析、激光雷达探测传输量及典型案例,系统分析2018—2020年冬季合肥市主要传输型重污染过程,揭示合肥大气污染输送通道的主要特征和污染期间PM2.5的传输通量。结果表明:合肥市冬季污染主要输入通道分别为京津冀-山东西部-安徽北部-合肥(35%)、山东南部-安徽北部-南京-合肥(26%)、内蒙古-河北-山东-江苏中部-合肥(24%)、内蒙古-山西-河北南部-河南-安徽北部-合肥(15%);主要输出通道为合肥-六安或安庆-湖北-江西(54%)、合肥-安徽北部-江苏北部(18%)、合肥-河南南部-陕西(17%)、合肥-上海或浙江-海上(11%)。对激光雷达监测结果采用像素检测法分析,结果表明2018—2020年污染传输过程的平均传输通量分别可达20.3、33.7、19.5 t/h,年际差异较大。外源传输通量较高时的主导风向为偏北风,并且风速为3.1 m/s左右。合肥市处于安徽省自北向南污染传输通道的中游区域,受上游城市传输影响显著,典型污染传输型的平均传输通量可比上游城市(淮北市)低57.6%,比下游城市(池州市)高25.5%,且污染过程中常伴随PM...  相似文献   
27.
合肥市饮用水和水源水中邻苯二甲酸酯的污染现状调查   总被引:4,自引:0,他引:4  
为了解邻苯二甲酸酯类对水质的污染情况,采用LLE—GC方法对合肥市的两个重点饮用水水源董铺水库和巢湖以及饮用水进行采样分析。结果表明,邻苯二甲酸二丁酯和邻苯二甲酸二异辛酯在所有采样点位均有检出,邻苯二甲酸二丁酯的最高值为7.25μg/L,邻苯二甲酸二异辛酯最高值为6.47μg/L,未检出邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸丁基苄酯和邻苯二甲酸二正辛酯。合肥市饮用水及水源水不同程度地受到邻苯二酸酯污染。  相似文献   
28.
为系统分析合肥市长时间序列空气质量变化特征,对合肥市2001—2020年SO2、NO2和PM10,以及2013—2020年CO、O3和PM2.5的浓度特征开展研究。采用Mann-Kendall(M-K)时间趋势检验法分析了6项污染物的时间变化规律,同时考虑了人为活动对污染物小时浓度的影响。结果表明,PM2.5和O3是目前影响合肥市空气质量的首要污染物。2014年以来,合肥市PM10、PM2.5、CO和SO2年均浓度均呈逐年下降趋势,但NO2和O3污染有加剧趋势。合肥市SO2和颗粒物浓度表现为冬春季节高、夏秋季节低;O3浓度变化趋势与之相反;NO2和CO浓度呈秋冬季节高、春夏季节低。  相似文献   
29.
综合利用环境空气质量常规监测、挥发性有机物(VOCs)在线监测,以及后向轨迹聚类分析、权重潜在源区分析和正交矩阵因子分解法等多种监测分析方法,基于合肥市经历的一次典型臭氧(O3)污染过程(2020年9月1—10日),系统分析了合肥市O3污染的典型特征及成因。结果显示,此次污染过程的O3小时平均浓度高达96 μg/m3,且O3浓度波动较大,在9月6日13:00达到了224 μg/m3,呈现出快速生成、快速消耗的污染特征,并在夜间呈现出非典型的二次峰值过程。污染期间,合肥市基本处于VOCs控制区,芳香烃对O3生成潜势的贡献最大(45.2%),其次是烷烃(31.8%)和烯烃(21.5%);污染阶段的VOCs主要来自机动车排放源(44.1%)、燃烧源(21.3%)、工业源(15.3%)、溶剂使用源(12.4%)和天然源(6.9%),累积阶段和污染阶段均受机动车尾气排放和溶剂使用的影响较大。此外,台风外围下沉气流和高温、低湿、低风速等气象条件是引发此次O3污染过程的主要外因,而合肥市周边的高污染区域则是此次O3污染过程的潜在外部源区。  相似文献   
30.
利用滁州市环境空气质量监测数据和气象观测数据,分析了滁州市O3污染基本特征,并着重分析了一次连续O3污染过程中气象因素、VOCs以及其他污染物对于O3浓度的影响。结果表明:滁州市环境空气污染类型正由"PM2.5型"向"PM2.5和O3混合型"转变,O3污染程度呈现加重趋势,污染持续时间有所拉长。9月4—9日一次连续O3污染过程中O3呈单峰状;受到光化学生成和区域传输共同影响,峰值时气温大多在30℃以上,相对湿度较小,风速大多处于小风区(WS≤1 m/s),也有部分处于风速较大区域(WS>3 m/s);VOCs/NOx比值法和O3/NOx比值法均反映此次连续O3污染为VOCs控制;体积分数较大的VOCs物种主要为烷烃,其中单个体积分数最大的物种是乙烷;烯烃是对O3生成贡献最大的关键活性组分,对O3生成潜势的贡献为53.5%,控制1-戊烯、反2-戊烯、异戊二烯、间/对二甲苯等物种可以有效控制光化学生成对此次O3污染过程的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号