首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   2篇
  国内免费   5篇
环境安全   162篇
  2023年   5篇
  2022年   33篇
  2021年   12篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有162条查询结果,搜索用时 46 毫秒
81.
Arsenic contaminating groundwater in Bangladesh is one of the largest environmental health hazards in the world. Because of the potential risk to human health through consumption of agricultural produce grown in fields irrigated with arsenic contaminated water, we have determined the level of contamination in 100 samples of crop, vegetables and fresh water fish collected from three different regions in Bangladesh. Arsenic concentrations were determined by hydride generation atomic absorption spectrophotometry. All 11 samples of water and 18 samples of soil exceeded the expected limits of arsenic. No samples of rice grain (Oryza sativa L.) had arsenic concentrations more than the recommended limit of 1.0 mg/kg. However, rice plants, especially the roots had a significantly higher concentration of arsenic (2.4 mg/kg) compared to stem (0.73 mg/kg) and rice grains (0.14 mg/kg). Arsenic contents of vegetables varied; those exceeding the food safety limits included Kachu sak (Colocasia antiquorum) (0.09-3.99 mg/kg, n=9), potatoes (Solanum tuberisum) (0.07-1.36 mg/kg, n=5), and Kalmi sak (Ipomoea reptoms) (0.1-1.53 mg/kg, n=6). Lata fish (Ophicephalus punctatus) did not contain unacceptable levels of arsenic. These results indicate that arsenic contaminates some food items in Bangladesh. Further studies with larger samples are needed to demonstrate the extent of arsenic contamination of food in Bangladesh.  相似文献   
82.
● A global snapshot of plastic waste generation and disposal is analysed. ● Effect of plastic pollution on environment and terrestrial ecosystem is reviewed. ● Ecotoxicity and food security from plastic pollution is discussed. Plastic is considered one of the most indispensable commodities in our daily life. At the end of life, the huge ever-growing pile of plastic waste (PW) causes serious concerns for our environment, including agricultural farmlands, groundwater quality, marine and land ecosystems, food toxicity and human health hazards. Lack of proper infrastructure, financial backup, and technological advancement turn this hazardous waste plastic management into a serious threat to developing countries, especially for Bangladesh. A comprehensive review of PW generation and its consequences on environment in both global and Bangladesh contexts is presented. The dispersion routes of PW from different sources in different forms (microplastic, macroplastic, nanoplastic) and its adverse effect on agriculture, marine life and terrestrial ecosystems are illustrated in this work. The key challenges to mitigate PW pollution and tackle down the climate change issue is discussed in this work. Moreover, way forward toward the design and implementation of proper PW management strategies are highlighted in this study.  相似文献   
83.
Cities in Bangladesh produce large amounts of solid waste (SW) through various human activities which severely pollutes our native environment. As a result, SW pollutes the three basic environmental elements (air, water, and soil) by increasing pathogenic microbial load, which might be hazardous to public health directly or indirectly. In this study, we conducted 30 samples (i.e., soil, water, and air) collected from areas where municipal solid wastes are dumped (Tangail Sadar Upazila, Bangladesh). All the samples were analyzed to assess bacteriological quality for presumptive viable and coliform count using different agar media. We performed serial dilution 10−3–10−10 times for soil and water samples, and the diluted samples were spread on Mac-Conkey agar and nutrient agar plates. For the air sample, the sterile media containing petri-dish was placed adjacent to the dumpsite of the municipal waste and kept for an hour. Then all the samples were incubated at 37°C overnight for total viable count (TVC) and total coliform count (TCC). Biochemical tests and PCR were performed for the identification of these microorganisms. The antibiogram study was performed to reveal their (identified bacteria) susceptibility against clinically used antibiotics according to the standard disk diffusion technique. The highest bacterial loads were found in the air: TVC 3.273 × 103 and TCC 1.059 × 103 CFU/plate; tube-well water: TVC 8.609 × 103, and TCC 8.317 × 103 CFU/mL; in surface water: TVC 6.24 × 1013 CFU/mL and TCC 2.2 × 1012 CFU/mL; in soil: TVC 2.88 × 1011 and TCC 1.02 × 1011 CFU/g, respectively. Microbes from SW can be transmitted through air, dust particles, or flies, and here we found an average of 1120 microbes spread over 63.61 cm2 area per hour. Eight bacterial isolates (Pseudomonas spp., Klebsiella spp., E. coli, Proteus spp., V. cholera, Salmonella spp., Shigella spp., and Vibrio spp.) were identified by the biochemical test. Among them, E. coli and Shigella spp. were further ensured by PCR targeting bfpA and ipaH genes. Antibiotic susceptibility test results showed that E. coli isolates were highly resistant to erythromycin (80%); Shigella spp. were resistant to nalidixic acid (90%), whereas Salmonella spp. was found resistant to kanamycin (90%). Vibrio spp. were also resistant to azithromycin (80%) and erythromycin (80%), which should be a great concern for us. A semi-structured survey revealed that 63% of respondents suffered from different clinical conditions (intestinal diseases) due to SW pollution. So, steps should be taken to improve the proper management and disposal of solid waste and liquid effluent to save our environment and public health.  相似文献   
84.
Environmental Science and Pollution Research - The present study aims at evaluating the batch scale potential of cotton shell powder (CSP), Moringa oleifera leaves (ML), and magnetite-assisted...  相似文献   
85.
Environmental Economics and Policy Studies - This study estimates health cost of salinity contamination in drinking water in the severe salinity affected three south-western districts of...  相似文献   
86.
Regional Environmental Change - Competition for land is increasing as a consequence of the growing demands for food and other commodities and the need to conserve biodiversity and ecosystem...  相似文献   
87.
The most consumed food samples of cereals (rice, maize and wheat), vegetables (lentil, brinjal, carrot, bean, potato, tomato, onion and chili), fruits (banana, mango and jackfruit), fish (taki, rui, pangas and tilapia), egg (chicken and duck), milk (cow) and meat (chicken, duck, beef and mutton) were collected from some markets of Bogra district northern part of Bangladesh to evaluate the levels of arsenic (As) and associated health risk to the adult’s and child inhabitants. Arsenic is a highly toxic element, and its presence in food composites is a matter of concern to the world scientists. Target hazard quotients (THQs) and target carcinogenic risk were calculated to evaluate the non-carcinogenic and carcinogenic health risk from ingested arsenic. The highest and the lowest mean concentrations of arsenic were noted in the Tilapia fish [(0.94 mg/kg, wet weight (ww)] and beef (0.012 mg/kg, ww). The daily intakes of arsenic via foodstuffs were 1.92 and 3.30 µg/kg-bw/day for rural adults and children and 1.69 and 3.04 µg/kg-bw/day for urban adults and children, respectively. The result shows the highest THQs of arsenic in cereals and vegetables for both the rural and urban inhabitants which exceed the safe limit (>1) indicating that cereals and vegetables are the main food items contributing to the potential health risk. The estimated target cancer risks from ingesting dietary arsenic all exceeded 10?6, indicating increased risk of cancer for adults and children in the study area.  相似文献   
88.
The optimization of chlorine dosage and the number of booster locations is an important aspect of water quality management in distribution networks. Booster chlorination helps to maintain uniformity and adequacy of free residual chlorine concentration, essential for safeguarding against microbiological contamination. Higher chlorine dosages increase free residual chlorine concentration but generate harmful by-products, in addition to taste and odor complaints. It is possible to address these microbial, chemical, and aesthetic water quality issues through free residual chlorine concentration. Estimating a water quality index (WQI) based on regulatory chlorine thresholds for microbial, chemical, and aesthetics criteria can help engineers make intelligent decisions. An innovative scheme for maintaining adequate residual chlorine with optimal chlorine dosages and numbers of booster locations was established based on a proposed WQI. The City of Kelowna (BC, Canada) water distribution network served to demonstrate the application of the proposed scheme. Temporal free residual chlorine concentration predicted with EPANET software was used to estimate the WQI, later coupled with an optimization scheme. Preliminary temporal and spatial analyses identified critical zones (relatively poor water quality) in the distribution network. The model may also prove useful for small or rural communities where free residual chlorine is considered as the only water quality criterion.  相似文献   
89.
A procedure is detailed for the selective analysis of trace aluminum by flame atomic absorption spectrophotometer coupled with off-line column separation and preconcentration. Chelating resin was synthesized by covalent functionalization of Amberlite XAD-16 by 2-(2-hydroxyphenyl) benzoxazole. The modified resin was characterized using FT-IR spectroscopy, energy dispersive x-ray analysis, elemental analysis, thermogravimetric analysis/differential thermal analysis, and minimum energy run. The optimum sorption was at pH 9?±?0.1 with corresponding t 1/2 of only 7 min. Many competitive anions and cations studied did not interfere at all in the selective determination of Al(III), at the optimized conditions. The resin shows maximum sorption capacity of 21.58 mg g?1 and can be regenerated up to 75 cycles without any discernible capacity loss. The Langmuir isotherm model provides the better correlation of the experimental data (r 2?=?0.999) in comparison to Freundlich isotherm model, while the Scatchard analysis revealed homogeneous binding sites in the chelating resin. Analytical figures of merit were evaluated by accuracy (standard reference materials and recovery experiment), precision (RSD <5 %), and detection limit (2.8 μg L?1). The applicability was demonstrated by analysis of trace aluminum in biological, environmental, and food samples.  相似文献   
90.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to the landscape. Such contamination can also directly affect human health when irrigated crops are primarily used for human consumption. Therefore, a large number of humans are potentially at risk worldwide due to daily As exposure. Numerous previous studies have been severely limited by small sample sizes which are not reliably extrapolated to large populations or landscapes. Human As exposure and risk assessment are no longer simple assessments limited to a few food samples from a small area. The focus of more recent studies has been to perform risk assessment at the landscape level involving the use of biomarkers to identify and quantify appropriate health problems and large surveys of human dietary patterns, supported by analytical testing of food, to quantify exposure. This approach generates large amounts of data from a wide variety of sources and geographic information system (GIS) techniques have been used widely to integrate the various spatial, demographic, social, field, and laboratory measured datasets. With the current worldwide shift in emphasis from qualitative to quantitative risk assessment, it is likely that future research efforts will be directed towards the integration of GIS, statistics, chemistry, and other dynamic models within a common platform to quantify human health risk at the landscape level. In this paper we review the present and likely future trends of human As exposure and GIS application in risk assessment at the landscape level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号