首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   3篇
  国内免费   2篇
地球科学   128篇
  2023年   1篇
  2020年   3篇
  2019年   8篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   12篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
121.
This study aimed to clarify the vertical differences in bacterial growth and grazing pressure on bacteria by heterotrophic nanoflagellates (HNF) and to identify the controlling factors of bacterial growth in temperate coastal waters of Sagami Bay, Japan. In addition to environmental factors, the annual monthly variations in bacterial growth rate (BGR) and the relative abundance of bacteria to HNF (BA/HNFA) were investigated in the euphotic and disphotic layers between May 2012 and May 2013. Significant vertical differences in BGR and BA/HNFA were evident between the two layers during the thermal stratification times of May to October 2012 and April to May 2013. BGR indicated significantly stronger limitation of bacterial growth in the euphotic layer compared to the disphotic layer. In contrast, significantly lower BA/HNFA was observed in the euphotic layer, suggesting significantly higher grazing pressure on bacteria by HNF. However, significant differences in BGR and BA/HNFA were not observed between the two layers from November 2012 to Match 2013, when the water column was well-mixed vertically due to the cooling and wind-induced mixing of surface water. This study indicates that bacteria in the euphotic layer grow less actively and are more vulnerable to predatory grazing by HNF relative to the disphotic layer during the stratification period. Further, multiple regression analyses indicate that bacterial growth was most controlled by the concentrations of chlorophyll a and dissolved organic carbon in the euphotic and disphotic layers, respectively.  相似文献   
122.
This paper examines the influence of aSargassum forest on temporal fluctuations in temperatures of surrounding water in relation to the thermal structure of water in and above theSargassum forest. Water temperature records were obtained at about one-minute intervals for almost two days in May 1977 during the season of luxuriant seaweed growth, and in August 1977 during the season of little growth. The fluctuations were divided into two types. (1) A diurnal fluctuation under the forest with about a three hour lag behind that above the forest during the season of luxuriant growth but with about a 30 min lag during the season of little growth. (2) Sharp spike-like fluctuations with periods shorter than five minutes appearing only in the dense canopy or floating seaweeds in the surface and subsurface layers during the period of luxuriant growth. The luxuriant forest ofSargassum seems to influence the spatial distribution of water temperature and consequently seems to induce the fluctuations mentioned above. The relationship between short period fluctuations and behaviours of larval fishes are discussed.  相似文献   
123.
It has been reported that sand production, which is a simultaneous production of soil particles along with gas and water into a production well, forced to terminate the operation during the world's first offshore methane production test from hydrate-bearing sediments in the Eastern Nankai Tough. The sand production is induced by internal erosion, which is the detachment and migration of soil particles from soil skeleton due to seepage flow. The inflow of the eroded soil particles into the production well leads to damage of the production devices. In the present study, a numerical model to predict the chemo-thermo-mechanically coupled behavior including internal erosion during hydrate dissociation has been formulated based on the multiphase mixture theory. In the proposed model, the internal erosion is expressed as mass transition of soil particles from soil skeleton to the fluidized soil particles. Since the internal erosion is considered to depend on the soil particle size, mass of soil particles are divided into several groups that have different representative particle diameters, and the constitutive equations for the onset condition and the mass transition rate of the internal erosion are formulated for each group. Also, transportation of soil particles in the liquid phase is formulated for each particle size group in the proposed model. Finally, a simulation of the methane gas production from the hydrate-bearing sediment by depressurization method is presented, and the internal erosion and the dissociation behavior are discussed.  相似文献   
124.
In order to understand the formation of the few but large, hematite deposits on Mars, comparisons are often made with terrestrial hematite occurrences. In southern Utah, hematite concretions have formed within continental sandstones and are exposed as extensive weathered-out beds. The hematite deposits are linked to geological and geomorphological features such as knobs, buttes, bleached beds, fractures and rings. These terrestrial features are visible in aerial and satellite images, which enables a comparison with similar features occurring extensively in the martian hematite-rich areas. The combination of processes involved in the movement and precipitation of iron in southern Utah can provide new insights in the context of the hematite formation on Mars. Here we present a mapping of the analogue geological and geomorphological features in parts of Meridiani Planum and Aram Chaos. Based on mapping comparisons with the Utah occurrences, we present models for the formation of the martian analogues, as well as a model for iron transport and precipitation on Mars. Following the Utah model, high albedo layers and rings in the mapped area on Mars are due to removal or lack of iron, and precipitation of secondary diagenetic minerals as fluids moved up along fractures and permeable materials. Hematite was precipitated intraformationally where the fluid transporting the reduced iron met oxidizing conditions. Our study shows that certain geological/geomorphological features can be linked to the hematite formation on Mars and that pH differences could suffice for the transport of the iron from an orthopyroxene volcanoclastic source rock. The presence of organic compounds can enhance the iron mobilization and precipitation processes. Continued studies will focus on possible influence of biological activity and/or methane in the formation of the hematite concretions in Utah and on Mars.  相似文献   
125.
This paper describes the mobilization and speciation of As found in hydrothermally altered rock under oxic column conditions. The altered rock sample was obtained from a tunnel project located in the Nakakoshi area of Hokkaido, Japan, whose geology is represented by slate, shale and sandstone. This area has undergone silicification, pyritization and argillic alteration resulting in As-enrichment of the rock. Results of the column experiments show that the infiltration rate, bulk density and rock bed thickness affected the duration of water residence, which in turn influenced the pH of the rock–water system. Coexisting ions most notably Ca2+ at amounts greater than ca. 50 mg/L retarded the mobilization of As. Mobilization of As from the rock with time occurred in two stages: stage 1 (weeks 1–20) with higher As leaching and stage 2 (weeks 20–76) characterized by nearly constant As release. In addition, pore water As concentrations revealed that the columns developed into two regions: the top half where most of the leaching occurred and the bottom part dominated by adsorption. Thus, the mechanism controlling the mobilization of As from the rock is a combination of one or more of the following processes: dissolution of soluble As-bearing fractions, pyrite oxidation and adsorption reactions. Arsenite (As[III]) was the dominant species in the effluent at the start of the experiment in columns with shorter water residence time and lower pH conditions (<8). On the other hand, arsenate (As[V]) was the major inorganic species released from the rock at higher pH (8–9.5) and when the system was close to equilibrium. Speciation of As with depth also indicated that As[III] disappeared around the bottom half of the columns, probably as a result of adsorption and/or oxidation. Arsenic speciation is partially controlled by the pH dependent adsorption of As species. The important adsorbent phases in the rock included Fe–Al oxides/oxyhydroxides, clay minerals and organic matter, which permitted the columns to attenuate additional As loadings including As[III]. Implications of these results on the design of a novel disposal method for these altered rocks include the enhancement of As adsorption through the addition of natural or artificial adsorbents and the utilization of a covering soil with low permeability to minimize rainwater infiltration into the rock.  相似文献   
126.
127.
Fifty-three samples, including brines associated with oil and natural gas reservoirs and groundwater samples from deep boreholes, were collected from the Pacific and Japan Sea coastal regions in Japan. The 129I/127I and 36Cl/Cl ratios, and stable isotopes (δD and δ18O) are compared to investigate differences related to the geotectonic settings of the two regions. The δD and δ18O data indicate that brine and groundwater from the Pacific coastal region reflect mixing of meteoric water with connate seawater in the pores of sedimentary rocks. On the other hand, brine and groundwater from the Japan Sea coastal region have been hydrothermally altered. In particular, brines associated with petroleum accumulations at Niigata and Akita showed the same isotopic characteristics as fluids found in the Kuroko deposits of the Green Tuff region in northeastern Japan. There is little difference in the 36Cl/Cl ratios in brine and groundwater from the Pacific and Japan Sea coasts. Most brine and some deep groundwater, except those from the Pleistocene Kazusa Group, have already reached the average secular equilibrium ratio of 9.9 ± 2.7 × 10−15 for their mudstone and sandstone reservoirs. There was no correlation between the 36Cl/Cl ratios and differences in geotectonic setting between the Pacific and the Japan Sea coast. The molar I/Br ratio suggests that the I in all of water samples was of biogenic origin. The average 129I/127I ratio was 290 ± 130 × 10−15 to 294 ± 105 × 10−15 in both regions, showing no relationship to the different geotectonic settings. The uncontaminated brine and groundwater samples are likely to have retained the original 129I/127I ratios of marine I released from the old organic matter stored in sedimentary rock.  相似文献   
128.
A major heavy-oil spill from the Russian tanker Nakhodka occurred in the Sea of Japan on 2 January 1997. We investigated the impacts of this spill on a rocky intertidal ecosystem along the southern coast of the Sea of Japan. We selected Imago-Ura Cove as our study site to observe temporal changes along the oiled shore, because minimal cleaning effort was made in this area. Field surveys were conducted every autumn and spring from 1997 to 2000. We measured coverage by macroalgae in 1 x 1-m(2) quadrats and counted the animals in 5 x 5-m(2) quadrats along the intertidal zone. Changes in the ecosystem caused by the oil spill were analyzed by applying a geographical information system (GIS) to the Sea of Japan for the first time. The GIS showed that following the accident there were heavily oiled areas in sheltered regions, but these decreased over the three years. It also showed that coverage by macroalgae and the number of animals increased, although some species of algae with microscopic sporophyte generations, and some populations of perennial shellfish, remained stable or decreased during the study period. GIS was able to trace temporal changes in intertidal communities resulting from the impacts of heavy oil on flora and fauna at a spatial scale of 10-100 m. GIS is thus a practical tool for visualizing, analyzing, and monitoring changes in an ecosystem polluted by oil, taking into account topographic differences along the coastline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号