首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
  国内免费   6篇
地球科学   137篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
81.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   
82.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   
83.
84.
We built a classification tree(CT) model to estimate climatic factors controlling the cold temperate coniferous forest(CTCF) distributions in Yunnan province and to predict its potential habitats under the current and future climates, using seven climate change scenarios, projected over the years of 2070-2099. The accurate CT model on CTCFs showed that minimum temperature of coldest month(TMW) was the overwhelmingly potent factor among the six climate variables. The areas of TMW-4.05 were suitable habitats of CTCF, and the areas of -1.35 TMW were non-habitats, where temperate conifer and broad-leaved mixed forests(TCBLFs) were distribute in lower elevation, bordering on the CTCF. Dominant species of Abies, Picea, and Larix in the CTCFs, are more tolerant to winter coldness than Tsuga and broad-leaved trees including deciduous broad-leaved Acer and Betula, evergreen broadleaved Cyclobalanopsis and Lithocarpus in TCBLFs. Winter coldness may actually limit the cool-side distributions of TCBLFs in the areas between -1.35°C and -4.05°C, and the warm-side distributions of CTCFs may be controlled by competition to the species of TCBLFs. Under future climate scenarios, the vulnerable area, where current potential(suitable + marginal) habitats(80,749 km~2) shift to nonhabitats, was predicted to decrease to 55.91%(45,053 km~2) of the current area. Inferring from the current vegetation distribution pattern, TCBLFs will replace declining CTCFs. Vulnerable areas predicted by models are important in determining priority of ecosystem conservation.  相似文献   
85.
Scientific visits to Lake Nyos in Northwestern Cameroon in the aftermath of the gas disaster that killed over 1,750 people in 1986 revealed the presence of a pyroclastic natural dam in the northern border of the lake. This dam is being affected by back erosion. Collapse of the dam could cause a flood that would affect inhabited areas over a 220?km distance. Timing of dam collapse has been hotly debated based on vastly different carbon-14 and potassium-argon formation ages. In previous work, we used uranium series disequilibria to suggest a formation age of >5,000?years. Detailed comparison of uranium series and trace element data for lavas of Lake Nyos and Mt. Cameroon, both belonging to the Cameroon Volcanic Line, suggests that Lake Nyos basalts erupted with an initial radium-226/thorium-230 ratio that is two times higher than lavas erupting on Mt. Cameroon today. This information is used to infer an age of 8,750?±?490?years, which we suggest is the formation age of the Lake Nyos dam. The erosion rate deduced from this age does not indicate that collapse of the dam from back erosion alone and the attendant potential flood disaster are as eminent and alarming as previously thought. However, other factors militate for action to secure the dam. Work is underway to reinforce it by engineering methods.  相似文献   
86.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   
87.
The X-ray CT based numerical analysis of fracture flow for core samples, recently developed by the authors, was applied to two granite core samples having either a mated artificial or a mated natural fracture at confining pressures of 5 to 50 MPa. A third-generation medical X-ray CT scanner was used to image the samples within a core holder consisting of an aluminum liner and a carbon fiber overwrap. Fracture models (i.e., aperture distributions) were obtained by the CT images, the resolution of which was coarser than the apertures, and a single-phase flow simulation was performed using a local cubic law-based fracture flow model. Numerical results were evaluated by a fracture porosity measurement and a solution displacement experiment using NaCl and NaI aqueous solutions. These numerical results coincided only qualitatively with the experimental results, primarily due to image noise from the aluminum liner of the core holder. Nevertheless, the numerical results revealed flow paths within the fractures and their changes with confining pressure, whereas the experimental results did not provide such results. Different stress-dependencies in the flow paths were observed between the two samples despite the similar stress-dependency in fracture porosity and permeability. The changes in total area of the flow paths with confining pressure coincided qualitatively with changes in breakthrough points in the solution displacement experiment. Although the data is limited, the results of the present study suggest the importance of analyzing fluid flows within naturally fractured core samples under in situ conditions in order to better understand the fracture flow characteristics in a specific field. As demonstrated herein, X-ray CT-based numerical analysis is effective for addressing this concern. Using a multi-phase flow model, as well as a core holder constructed of an engineered plastic, should provide a useful, non-destructive, and non-contaminative X-ray CT-based fracture flow analysis for core samples under in situ conditions in future studies.  相似文献   
88.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   
89.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   
90.
The Vertically Generalized Production Model (VGPM) was verified by the primary production data of the Sagami Bay, Japan. The VGPM with open ocean parameters including P B opt , maximum primary production per unit of chlorophyll a in the water column, explained only 40% of the variability of integrated primary production. Formulations of the open ocean P B opt showed no correlation with in situ P B opt . Adjustment of the parameters of chlorophyll a and temperature dependent P B opt improved the estimation of integrated primary production to 47% of the variation. Vertical integration parameters of VGPM also have to be adjusted to improve the estimation. Integrated primary production calculated with a stronger light dependency and with the adjusted P B opt model can explain 74% of the variation. This model was used to estimate primary production of the Sagami Bay during 2003 with satellite data. In situ measurements on cloudy days indicate that the use of satellite data from sunny days only overestimates primary production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号