首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67811篇
  免费   1008篇
  国内免费   1228篇
地球科学   70047篇
  2021年   455篇
  2020年   449篇
  2019年   487篇
  2018年   5595篇
  2017年   4821篇
  2016年   3737篇
  2015年   937篇
  2014年   1229篇
  2013年   2297篇
  2012年   2121篇
  2011年   4301篇
  2010年   3535篇
  2009年   4317篇
  2008年   3554篇
  2007年   4035篇
  2006年   1722篇
  2005年   1565篇
  2004年   1698篇
  2003年   1679篇
  2002年   1495篇
  2001年   1160篇
  2000年   1093篇
  1999年   874篇
  1998年   889篇
  1997年   877篇
  1996年   709篇
  1995年   709篇
  1994年   673篇
  1993年   593篇
  1992年   552篇
  1991年   522篇
  1990年   540篇
  1989年   527篇
  1988年   499篇
  1987年   583篇
  1986年   506篇
  1985年   645篇
  1984年   692篇
  1983年   637篇
  1982年   565篇
  1981年   632篇
  1980年   521篇
  1979年   484篇
  1978年   482篇
  1977年   459篇
  1976年   418篇
  1975年   410篇
  1974年   419篇
  1973年   418篇
  1971年   239篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
A full-sky template map of the Galactic free–free foreground emission component is increasingly important for high-sensitivity cosmic microwave background (CMB) experiments. We use the recently published Hα data of both the northern and southern skies as the basis for such a template.
The first step is to correct the Hα maps for dust absorption using the 100-μm dust maps of Schlegel, Finkbeiner & Davis. We show that for a range of longitudes, the Galactic latitude distribution of absorption suggests that it is 33 per cent of the full extragalactic absorption. A reliable absorption-corrected Hα map can be produced for ∼95 per cent of the sky; the area for which a template cannot be recovered is the Galactic plane area  | b | < 5°, l = 260°–0°–160°  and some isolated dense dust clouds at intermediate latitudes.
The second step is to convert the dust-corrected Hα data into a predicted radio surface brightness. The free–free emission formula is revised to give an accurate expression (1 per cent) for the radio emission covering the frequency range 100 MHz–100 GHz and the electron temperature range 3000–20 000 K. The main uncertainty when applying this expression is the variation of electron temperature across the sky. The emission formula is verified in several extended H  ii regions using data in the range 408–2326 MHz.
A full-sky free–free template map is presented at 30 GHz; the scaling to other frequencies is given. The Haslam et al. all-sky 408-MHz map of the sky can be corrected for this free–free component, which amounts to a  ≈6  per cent correction at intermediate and high latitudes, to provide a pure synchrotron all-sky template. The implications for CMB experiments are discussed.  相似文献   
52.
Representative results from a comparison of the chemical evolution of spherical collapse models without and with a intercloud medium are presented. The hot metal-rich gas distributes quickly the metals produced in supernovae throughout the galaxy, thus leading to a more homogeneous chemical evolution and flatter metallicity gradients in the gas and the stars. The stellar population is somewhat less concentrated towards the centre. The strong outflow results in a substantial loss of metals from the galaxy to its surroundings, and a lower effective yield in the galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
53.
Carcedo  L.  Brown  D.S.  Hood  A.W.  Neukirch  T.  Wiegelmann  T. 《Solar physics》2003,218(1-2):29-40
Many authors use magnetic-field models to extrapolate the field in the solar corona from magnetic data in the photosphere. The accuracy of such extrapolations is usually judged qualitatively by eye, where a less judgemental quantitative approach would be more desirable. In this paper, a robust method for obtaining the best fit between a theoretical magnetic field and intensity observations of coronal loops on the solar disk will be presented. The method will be applied to Yohkoh data using a linear force-free field as an illustration. Any other theoretical model for the magnetic field can be used, provided there is enough freedom in the model to optimize the fit.  相似文献   
54.
Summary ?In the south-eastern Altenbergkar–Silbereck area in the eastern Tauern window (Lungau, Salzburg) structurally controlled precious-metal (Au–Ag) mineralization is hosted in marbles of the Permo(?)-Mesozoic Silbereck Formation and in the underlying Variscan Central gneiss. During the Alpine otogeny both lithologies were affected by ductile deformation (shearing, D1; folding, D2/D3) and subsequent brittle deformation (tension gashes, D4; normal faulting, D5) related to the uplift and exhumation of the Tauern window. Mineralization is controlled by brittle D4 structures. NE–SW trending steeply dipping tension gashes of the “Tauerngoldgang” type occur within the Central gneiss. Three different marble-hosted ore types following fracture systems as well as foliation and bedding planes can be distinguished: 1) metasomatic replacement ores, 2) ores in tension gashes and 3) ores in talc-bearing structures, often containing high-grade gold and silver mineralization (native gold in association with Ag–Pb–Bi–sulfosalts). Four stages of mineralization can be distinguished which occur in all ore types: arsenopyrite–pyrite–pyrrhotite (first stage), Au–(Ag–Pb–Bi–sulfosalts) (second stage), base-metal sulfides and tetrahedrite–tennantite (third stage) and Ag-rich galena (fourth stage). Preliminary fluid inclusion data indicate temperatures of ore formation well above 300 °C (346 °C mean) for the second stage within the Central gneiss and temperatures between 310 and 230 °C for the second and third stages in the marble. Received October 12, 2001; revised version accepted September 5, 2002 Published online March 10, 2003  相似文献   
55.
Observations of the interstellar medium reveal a dynamic realm permeated by shocks. These shocks are generated on a large range of scales by galactic rotation, supernovae, stellar winds, and other processes. Whenever a shock encounters a density interface, Richtmyer-Meshkov instabilities may develop. Perturbations along the interface grow, leading to structure formation and material mixing. An understanding of the evolution of Richtmyer-Meshkov instabilities is essential for understanding galactic structure, molecular cloud morphology, and the early stages of star formation. An ongoing experimental campaign studies Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma at the Omega laser facility. Cylindrical targets, consisting of a low density foam core and an aluminum shell covered by an epoxy ablator, are directly driven by fifty laser beams. The aluminum shell is machined to produce different perturbation spectra. Surface types include unperturbed (smooth), single-mode sinusoids, multi-mode (rough), and multi-mode with particular modes accentuated (specified-rough). Experimental results are compared to theory and numerical simulations.  相似文献   
56.
Laboratory measurements of the OI1173989 Å (3s' 3D° → 2p41D, 3s' 3D° → 2p43P) branching ratio have been made with a value of 1.5 × 10t-4 indicated. This value makes the branching transition at 1173 Å an order of magnitude stronger than the branch at 7990 Å (3s' 3D° → 3p 3P). The 1173 Å branching loss is still too weak a loss process for multiply scattered 989 Å photons to resolve the 989 Å intensity problem in the dayglow.  相似文献   
57.
A family of related Pc1-2 (0.2–10 s) discrete daytime geomagnetic pulsations is presented using pulsation data obtained at Davis, Antarctica, a typical polar-cap station. The morphological properties of IPRP and Pclb pulsation regimes, which maximize in amplitude and frequency of occurrence under the projection of the polar cusp, are examined. Furthermore, two other variations of discrete pulsation bursts yet to be named are also presented, viz IPFP (Intervals of Pulsations with Falling Period) and IPAP (Intervals of Pulsations with Alternating Period) which are observed on rare occasions. It is also suggested that the Pc1b (0.2–5 s) should be extended to incorporate Pc2b (5–10 s) which from the results in this paper are physically the same phenomenon and could be collectively classified as IPCP (Intervals of Pulsations with Constant Period).  相似文献   
58.
59.
The NAIAD experiment (NaI Advanced Detector) for weakly interacting massive particle (WIMP) dark matter searches at Boulby mine (UK) is described. The detector consists of an array of encapsulated and unencapsulated NaI(Tl) crystals with high light yield. Six crystals are collecting data at present. Data accumulated by four of them (10.6 kg × year exposure) have been used to set upper limits on the WIMP–nucleon spin-independent and WIMP–proton spin-dependent cross-sections. Pulse shape analysis has been applied to discriminate between nuclear recoils, as may be caused by WIMP interactions, and electron recoils due to gamma background. Various calibrations of crystals are presented.  相似文献   
60.
We present warm dark matter (WDM) as a possible solution to the missing satellites and angular momentum problem in galaxy formation and introduce improved initial conditions for numerical simulations of WDM models, which avoid the formation of unphysical haloes found in earlier simulations. There is a hint, that because of that the mass function of satellite haloes has been overestimated so far, pointing to higher values for the WDM particle mass. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号