首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球科学   21篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  1998年   1篇
  1997年   2篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
1.
The Quepos, Nicoya and Herradura oceanic igneous terranes in Costa Rica are conspicuous features of a Mid to Late Cretaceous regional magmatic event that encompasses similar terranes in Central America, Colombia, Ecuador and the Caribbean. The Quepos terrane (66?Ma), which consists of ol-cpx phyric, tholeiitic pillow lavas overlain by highly vesicular hyaloclastites, breccias and conglomerates, is interpreted as an uplifted seamount/ocean island complex. The Nicoya (~90?Ma) and Herradura terranes consist of fault-bounded sequences of sediments, tholeiitic volcanics (pillow lavas and massive sheet flows) and plutonic rocks. The volcanic rocks were emplaced at relatively high eruption rates in moderate to deep water, possibly forming part of an oceanic plateau. Major and trace element data from Nicoya/Herradura tholeiites indicate higher melting temperatures than inferred for normal mid-ocean-ridge basalts (MORB) and/or a different source composition. Sr–Nd–Pb isotopic ratios from all three terranes are distinct from MORB but resemble those from the Galápagos hotspot. The volcanological, petrological and geochemical data from Costa Rican volcanic terranes, combined with published age data, paleomagnetic results and plate tectonic reconstructions of this region, provide strong evidence for a Mid Cretaceous (~90Ma) age for the Galápagos hotspot, making it one of the oldest known, active hotspots on Earth. Our results also support an origin of the Caribbean Plate through melting of the head of the Galápagos starting plume.  相似文献   
2.
The broad belt of intraplate volcanism in the East Atlantic between 25° and 37° N is proposed to have formed by two adjacent hotspot tracks (the Madeira and Canary tracks) that possess systematically different isotopic signatures reflecting different mantle source compositions. To test this model, Hf isotope ratios from volcanic rocks from all individual islands and all major seamounts are presented in this study. In comparison with published Nd isotope variations (6 εNd units), 176Hf/177Hf ratios span a much larger range (14 εHf units). Samples from the proposed Madeira hotspot track have the most radiogenic Hf isotopic compositions (176Hf/177Hfm up to 0.283335), extending across the entire field for central Atlantic MORB. They form a relatively narrow, elongated trend on the Nd vs. Hf isotope diagram (stretching over > 10 εHf units) between a depleted N-MORB-like endmember and a moderately enriched composition located on, or slightly below, the Nd–Hf mantle array, which overlaps the proposed “C” mantle component of Hanan and Graham (1996). In contrast, all samples from the Canary hotspot track plot below the mantle array (176Hf/177Hfm = 0.282943–0.283067) and form a much denser cluster with less compositional variation (~4 εHf units). The cluster falls between (1) a low Hf isotope HIMU-like endmember, (2) a more depleted composition, and (3) the moderately enriched end of the Madeira trend. The new Hf isotope data confirm the general geochemical distinction of the Canary and Madeira domains in the East Atlantic. Both domains, however, seem to share a common, moderately enriched endmember that has “C”-like isotope compositions and is believed to represent subducted, <1-Ga-old oceanic lithosphere (oceanic crust and possibly minor sediment addition). The lower 176Hf/177Hf ratio of the enriched, HIMU-like Canary domain endmember indicates the contribution of oceanic lithosphere with somewhat older recycling ages of ≥1 Ga.  相似文献   
3.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   
4.
In order to constrain better the distribution, age, geochemistry and origin of widespread Cenozoic intraplate volcanism on Zealandia, the New Zealand micro-continent, we report new 40Ar/39Ar and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from offshore (Chatham Rise, Campbell and Challenger Plateaus) and onland (North, South, Auckland, Campbell, Chatham and Antipodes Islands of New Zealand) volcanism on Zealandia. The samples include nephelinite, basanite through phonolite, alkali basalt through trachyte/rhyolite, and minor tholeiite and basaltic andesite, all of which have ocean island basalt (OIB)-type trace element signatures and which range in age from 64.8 to 0.17 Ma. Isotope ratios show a wide range in composition (87Sr/86Sr = 0.7027–0.7050, 143Nd/144Nd = 0.5128–0.5131, 177Hf/176Hf = 0.2829–0.2831, 206Pb/204Pb = 18.62–20.67, 207Pb/204Pb = 15.54–15.72 and 208Pb/204Pb = 38.27–40.34) with samples plotting between mid-ocean-ridge basalts (MORB) and Cretaceous New Zealand intraplate volcanic rocks.Major characteristics of Zealandia's Cenozoic volcanism include longevity, irregular distribution and lack of age progressions in the direction of plate motion, or indeed any systematic temporal or spatial geochemical variations. We believe that these characteristics can be best explained in the context of lithospheric detachment, which causes upwelling and melting of the upper asthenospheric mantle and portions of the removed lithosphere. We propose that a large-scale seismic low-velocity anomaly, that stretches from beneath West Antarctica to Zealandia at a depth of > 600 km may represent a geochemical reservoir that has been in existence since the Cretaceous, and has been supplying the upper mantle beneath Zealandia with HIMU-type plume material throughout the Cenozoic. In addition, the sources of the Cenozoic intraplate volcanism may be at least partially derived through melting of locally detached Zealandia lower lithosphere.  相似文献   
5.
We present major and trace element and Sr-Nd-Pb and U-Th-Pa-Ra isotope data for a small sample suite of primarily post-glacial, mildly alkalic volcanic rocks from the Snaefellsjökull central volcano situated off the main rift systems in western Iceland. The volcanic rocks are crystal-poor and range from olivine alkali basalt to trachyte and show tight correlations of major and trace elements that are explained by fractional crystallization involving removal of olivine, plagioclase, clinopyroxene, Fe-Ti oxide and apatite. Sr-Nd-Pb isotopes are practically invariant, consistent with derivation from the same source region. During fractionation from primitive basalt to evolved trachyte, (230Th/232Th), (230Th/238U) and (231Pa/235U) decrease progressively at broadly constant (238U/232Th). A continuous closed-system fractionation model that assumes constant initial (230Th/232Th) in the basaltic precursor melt indicates that hawaiite was derived from olivine basalt by ∼50% fractional crystallization within and trachyte by ∼80% fractionation within . An overrepresentation of evolved basalts and hawaiites with young inferred magma ages in the dataset is consistent with the parental precursor to these magmas intruded into the sub-volcanic magma plumbing system as a consequence of lithospheric rebound caused by deglaciation. Lavas affected by apatite removal have higher (231Pa/235U) than predicted for simple radioactive decay, suggesting apatite significantly fractionates U from Pa. The proposed fractionation model consistently explains our U-series data assuming and and . If applicable, these D values would indicate that the effect of apatite fractionation must be adequately considered when assessing differentiation time scales using (231Pa/235U) disequilibria data.  相似文献   
6.
The paper presents data on the petrology and geochemistry of plutonic rocks dredged from the Stalemate Fracture Zone, Northwest Pacific Ocean, during Cruise SO201-1 of the R/V “Sonne”. We proposed also the reconstruction of their formation conditions and interpretation of their tectonic evolution. The genesis of gabbroids found among plutonic rocks composing the Cretaceous-Paleogene basement of the northwestern part of the Pacific Ocean was related to magmatism at the ancient spreading center and provides record of the evolution of the parental magmatic melts of N-MORB. Along with related peridotites, basalts, and dolerites, these rocks can be attributed to the disintegrated the Cretaceous-Paleogene oceanic lithosphere of the Pacific Ocean. The shallow mantle beneath the ancient oceanic crust of this area is made up of depleted magmatic spinel lherzolite, harzburgite, and dunite. The fact that gabbro-diorite and diorite that are not genetically related to the rocks of the Cretaceous-Paleogene basement of the Northwest Pacific occur at the eastern termination of the Stalemate Fracture Zone possibly reflects the complicated structure of the tectonic collage of rocks of different age that were produced in different geodynamic environments and were later tectonically brought together near the frontal portion of the Aleutian island arc. Judging by the isotopic-geochemical characteristics of these rocks, they cannot be classed with the family of oceanic plagiogranites. Deformations of the oceanic basement can be discerned throughout the whole Stalemate Fracture Zone as brecciation and large-amplitude vertical displacements within the oceanic lithosphere.  相似文献   
7.
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6–90.0 mol.% Fo, 1,722–3,915 ppm Ni, 1,085–1,552 ppm Mn, 1,222–3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr–Nd–Pb isotope compositions (87Sr/86Sr = 0.70315–0.70331, 143Nd/144Nd = 0.51288–0.51292, 206Pb/204Pb = 19.55–19.93, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 39.31–39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al. in: Science 316:412–417, 2007) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al. EPSL 277:514–524, 2009), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.  相似文献   
8.
This paper describes the performance of the Fully Depleted pn-junction CCD (pn-CCD) system, developed for ESA's XMM-satellite mission for soft x-ray imaging and spectroscopy in the single photon counting mode in the 100 eV to 10 keV photon range. The 58 mm x 60 mm large pn-CCD array, designed and fabricated at the Semiconductor Lab (Halbleiterlabor) of the Max-Planck-Institut, uses pn-junctions for registers and as backside structure. This concept naturally enables full depletion of the detector volume independent of the silicon wafer's resistivity and thickness, and as such make it an efficient detector for the x-ray region and the infrared. For high detection efficiency in the soft x-ray region and UV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with its own on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout and fast data rate: the cooled pn-CCD system can be read out at a data rate up to 3 MHz with an electronic noise floor of ENC < 5 e-.  相似文献   
9.
The Earth's mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436]. Indeed, the HIMU component (high µ = 238U/204Pb), one of four isotopically distinct end-members in the Earth's mantle, is generally attributed to relatively old (≥ 1–2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to assess the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle end-members) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~ 1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (< 1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.  相似文献   
10.
We report δ44/40Ca(SRM 915a) values for eight fused MPI‐DING glasses and the respective original powders, six USGS igneous rock reference materials, the U‐Th disequilibria reference material TML, IAEA‐CO1 (Carrara marble) and several igneous rocks (komatiites and carbonatites). Sample selection was guided by three considerations: (1) to address the need for information values on reference materials that are widely available in support of interlaboratory comparison studies; (2) support the development of in situ laser ablation and ion microprobe techniques, which require isotopically homogenous reference samples for ablation; and (3) provide Ca isotope values on a wider range of igneous and metamorphic rock types than is currently available in the scientific literature. Calcium isotope ratios were measured by thermal ionisation mass spectrometry in two laboratories (IFM‐GEOMAR and Saskatchewan Isotope Laboratory) using 43Ca/48Ca‐ and 42Ca/43Ca‐double spike techniques and reported relative to the calcium carbonate reference material NIST SRM 915a. The measurement uncertainty in both laboratories was better than 0.2‰ at the 95% confidence level. The impact of different preparation methods on the δ44/40Ca(SRM 915a) values was found to be negligible. Except for ML3‐B, the original powders and the respective MPI‐DING glasses showed identical δ44/40Ca(SRM 915a) values; therefore, possible variations in the Ca isotope compositions resulting from the fusion process are excluded. Individual analyses of different glass fragments indicated that the glasses are well homogenised on the mm scale with respect to Ca. The range of δ44/40Ca(SRM 915a) values in the igneous rocks studied was larger than previously observed, mostly owing to the inclusion of ultramafic rocks from ophiolite sections. In particular, the dunite DTS‐1 (1.49 ± 0.06‰) and the peridotite PCC‐1 (1.14 ± 0.07‰) are enriched in 44Ca relative to volcanic rocks (0.8 ± 0.1‰). The Carrara marble (1.32 ± 0.06‰) was also found to be enriched in 44Ca relative to the values of assumed precursor carbonates (< 0.8‰). These findings suggest that the isotopes of Ca are susceptible to fractionation at high temperatures by, as yet, unidentified igneous and metamorphic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号