首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   4篇
  国内免费   2篇
地球科学   32篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2010年   1篇
  2002年   2篇
  1999年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
Most climatological studies characterize the future climate change as the evolution between a fixed current baseline and the future. However, as climate continues to change, ecosystems and societies will need to continuously adapt to a moving target. Here, we consider indicators of the pace of temperature change estimated from CMIP5 projections of an ensemble of climate models. We define the pace as a difference in relevant metrics between two successive 20-year periods, i.e. with a continually moving baseline. Under the strongest emission pathway (RCP8.5), the warming rate strongly increases, and peaks before 2080. All latitudes experience at least a doubling in the warming rate compared to the current period. Significant shifts in temperature distributions above twice the standard deviation between two successive 20-year periods expand from 9 % of continents on average currently to 41 % by 2060 onwards. In these regions, a warm year with a return period of about 50 years would become quite common 20 years later. The fraction of the world population exposed to such shifts will grow from 8 % to about 60 % on average, i.e. 6 billion people. Tropical areas are strongly affected, especially West Africa and South-East Asia. Low mitigation (RCP6.0) limits the warming rate to current values. Medium mitigation (RCP4.5) even reduces population exposure to significant shifts in temperature distributions to negligible values by the end of the century. Strong mitigation (RCP2.6) is the only option that generates a return to values similar to the historical period for all our indicators related to the pace of temperature change. This alternative way to analyze climate projections can yield new insights for the climate impacts and adaptation communities.  相似文献   
32.
Gullies have been a common phenomenon in semi‐arid northern Ethiopia for the last centuries. However, soil and water conservation (SWC) structures have been implemented for a long time to curb soil erosion. Though, like most of the affected areas worldwide, density and distribution of gullies and SWC structures, their causes and interrelations are poorly understood. The aims of this study were to develop a technique for mapping these densities of gullies and SWC structures, to explain their spatial distribution and to analyze changes over the period 1935–2014. Aerial photographs from 1935 to 1936 and Google Earth images from 2014 of the 5142 km2 Geba catchment were used. Transect lines were established to count gullies and SWC structures in order to calculate densities. On average, a gully density of 1.14 km km?2 was measured in 1935–1936 of which the larger portion (75%) were vegetated, indicating they were not very active. Over 80 years, gully density has significantly increased to 1.59 km km?2 with less vegetation growing in their channel, but 66% of these gullies were treated with check dams. There was c. 3 km km?2 of indigenous SWC structures (daget or lynchets) in 1935–1936 whereas a high density (20 km km?2) of introduced SWC structures (mainly stone bunds and terraces) were observed in 2014. The density of gullies is positively correlated with slope gradient and shrubland cover and negatively with cropland cover, whereas the density of SWC structures significantly increased with increasing cropland cover. Density maps of gullies and SWC structures indicate sensitive areas to gully formation and priority areas for the implementation of SWC structures in Geba catchment. The obtained results illustrate the feasibility of the methods applied to map the density of gullies and SWC structures in mountainous areas. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号