首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
  国内免费   6篇
地球科学   116篇
  2022年   7篇
  2021年   3篇
  2020年   7篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   10篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1996年   2篇
  1995年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
101.
Atmospheric measurement of radioactive xenon isotopes (radioxenon) plays a key role in remote monitoring of nuclear explosions, since it has a high capability to capture radioactive debris for a wide range of explosion scenarios. It is therefore a powerful tool in providing evidence for nuclear testing, and is one of the key components of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The reliability of this method is largely based on a well-developed measurement technology. In the 1990s, with the prospect of the build-up of a monitoring network for the CTBT, new development of radioxenon equipment started. This article summarizes the physical and technical principles upon which the radioxenon technology is based and the advances the technology has undergone during the last 10 years. In contrast to previously used equipment, which was manually operated, the new generation of radioxenon monitoring equipment is designed for automated and continuous operation in remote field locations. Also the analytical capabilities of the equipment were strongly enhanced. Minimum detectable concentrations of the recently developed systems are well below 1 mBq/m3 for the key nuclide 133Xe for sampling periods between 8 and 24 h. All the systems described here are also able to separately measure with low detection limits the radioxenon isotopes 131mXe, 133mXe and 135Xe, which are also relevant for the detection of nuclear tests. The equipment has been extensively tested during recent years by operation in a laboratory environment and in field locations, by performing comparison measurements with laboratory type equipment and by parallel operation. These tests demonstrate that the equipment has reached a sufficiently high technical standard for deployment in the global CTBT verification regime.  相似文献   
102.
Forest stand structure is an important concept for ecology and planning in sustainable forest management. In this article, we consider that the incorporation of complementary multispectral information from optical sensors to Light Detection and Ranging (LiDAR) may be advantageous, especially through data fusion by back-projecting the LiDAR points onto the multispectral image. A multivariate data set of both LiDAR and multispectral metrics was related with a multivariate data set of stand structural variables measured in a Scots pine forest through canonical correlation analysis (CCA). Four statistically significant pairs of canonical variables were found, which explained 83.0% accumulated variance. The first pair of canonical variables related indicators of stand development, i.e. height and volume, with LiDAR height metrics. CCA also found attributes describing stand density to be related to LiDAR and spectral variables determining canopy coverage. Other canonical variables pertained to Lorenz curve-derived attributes, which are measures of within-stand tree size variability and heterogeneity, able to discriminate even-sized from uneven-sized stands. The most relevant result was to find that metrics derived from the multispectral sensor showed significant explanatory potential for the prediction of these structural attributes. Therefore, we concluded that metrics derived from the optical sensor have potential for complementing the information from the LiDAR sensor in describing structural properties of forest stands. We recommend the use of back-projecting for jointly exploiting the synergies of both sensors using similar types of metrics as they are customary in forestry applications of LiDAR.  相似文献   
103.
An advanced along-track scanning radiometer (AATSR) global multi-year aerosol retrieval algorithm is described. Over land, the AATSR dual-view (ADV) algorithm utilizes the measured top of the atmosphere (TOA) reflectance in both the nadir and forward views to decouple the contributions of the atmosphere and the surface to retrieve aerosol properties. Over ocean, the AATSR single-view (ASV) algorithm minimizes the discrepancy between the measured and modelled TOA reflectances in one of the views to retrieve the aerosol information using an ocean reflectance model. Necessary steps to process global, multi-year aerosol information are presented. These include cloud screening, the averaging of measured reflectance, and post-processing. Limitations of the algorithms are also discussed. The main product of the aerosol retrieval is the aerosol optical depth (AOD) at visible/near-infrared wavelengths. The retrieved AOD is validated using data from the surface-based AERONET and maritime aerosol network (MAN) sun photometer networks as references. The validation shows good agreement with the reference (r?=?0.85, RMSE?=?0.09 over land; r?=?0.83, RMSE?=?0.09 at coasts and r?=?0.96, RMSE?=?0.06 over open ocean). The results of the aerosol retrievals are presented for the full AATSR mission years 2002–2012 with seasonally averaged time series for selected regions.  相似文献   
104.
This paper considers numerical modelling of rock fracture induced by dynamic bit–rock interaction in percussive drilling. The work presented here extends the author's earlier research on the topic from the axisymmetric case to 3D case. The numerical method for modelling rock fracture includes a constitutive model for rock and a contact mechanics‐based technique to simulate the bit–rock interaction. The constitutive model is based on a combination of the recent viscoplastic consistency model, the isotropic damage concept and a parabolic compression cap. This model is improved here from its earlier state by calibrating the softening laws using fracture energies GIc and GIIc in tension and compression, respectively. Moreover, the viscosity modulus in tension is calibrated based on the dynamic Brazilian disc test. With these enhancements, the developed method is applied to 3D case of the bit–rock interaction problem assuming one symmetry plane. Single impact with single and multiple‐button bits is simulated. In the latter case, an initial borehole is modelled in order to simulate the usual in‐situ drilling conditions. The different failure types observed in the experiments as well as the interaction between the buttons resulting in chipping are realistically captured in the simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
105.
The study illustrates the critical role of accurate geological structural mapping to delineate crystalline aquifer zones more prone to high health risk due to elevated dissolved As in drinking wells.The analysis revisits the results from more than 1200 groundwater samples collected over ten years from domestic wells across the Tampere region(Finland).It is demonstrated that the highest dissolved As concentrations in the region(up to 2230 μg/L)are exclusively found near major faults and deformation zones(FDZs)detected via geophysical and geological surveys,and that a clear correlation exists between dissolved concentrations and the distance from the FDZs(r).Almost all values exceeding the drinking water limit(10 μg/L)occur at r8 km,while concentrations above 100 μg/L occur at r4 km.Solidphase As concentrations in bedrock show less dependency on FDZ than aqueous concentrations.This behavior is explained considering different mechanisms,which include enhanced sulfide oxidation and fracture connectivity,promoting preferential transport of dissolved As to FDZs and mixing of waters from different redox zones,mobilizing preferentially As(Ⅲ)or As(V).Fe hydro-oxides may also precipitate/dissolve preferentially because of FDZs,while residence time may influence the contact time between water and As-bearing minerals.It is concluded that the accurate mapping of FDZs,and in general of structural geology,provides an important preliminary information to identify where localized,sitespecific characterization of hydrogeology and geochemistry is more urgent to reduce As-related health risk from groundwater intake.  相似文献   
106.
Northern plants have to cope with a wide range of overwintering conditions, as the depth and physical properties of snow show high spatial variation in the Arctic. The overwintering of lingonberry ( Vaccinium vitis-idaea ) was studied in a reciprocal transplantation experiment between two sub-Arctic microhabitats in northern Finland. The experiment was set up in the autumn, and physiological traits related to overwintering were measured at the time of snowmelt in the following spring. The origin of the plants was not a significant source of variation for most of the traits measured, whereas major differences were observed between the two sites. Plants that overwintered at an exposed site above the treeline showed high relative winter damage, assessed by the electrolyte leakage of the leaves. No severe winter damage was observed in the plants that overwintered under a moderate snowpack at a sheltered birch forest site. These plants were able to maintain their photosynthetic capacity through the winter. A low capacity of photosystem II and a very low capacity of CO2 uptake were characteristic of the exposed site, where low temperatures and high irradiation predominate during late winter. However, photosynthetic capacity was recovered within a few days when the plants were kept under favourable conditions after the field experiment. The content of nonstructural carbohydrates was low, probably because of high respiratory losses under the snow. This short-term study suggests that lingonberry, which occupies a wide range of microhabitats in the present climate, may thrive even if the overwintering conditions change as a result of climatic warming.  相似文献   
107.
目的 阐述了SAR层析成像的基本原理,提出了基于Butterworth滤波的奇异值分解层析算法。利用柏林市高分辨率TerraSAR-X数据进行实验,提取了SAR像元内散射体的数量、位置及反射量,实现了星载高分辨率SAR真实数据层析成像,高程向估计精度达到米级。  相似文献   
108.

Volume Contents

Table of Contents Volume 103  相似文献   
109.
We analyzed responses of soluble reactive phosphorus (SRP), bioavailable phosphate (PO4), particulate phosphorus, turnover time of orthophosphate (Tt), and alkaline phosphatase activity (APA) to varying degrees of nutrient stress. The nutrient stress was evoked by different treatments in concentration and combination of inorganic nitrogen (N) and phosphorus (P), and labile organic carbon (glucose) to mesocosms in experiments carried out in eutrophic southern (Odense Fjord, Denmark) and northern (Tvärminne Archipelago, Finland) coastal zones of the Baltic Sea. Despite seasonal and geographical differences, similar responses were observed in both experiments. Low SRP (<100 nmol l?1), shortT t (<10 h), and increased levels of APA were observed in both N+P balanced and P deficient treatments, while the opposite trend was observed in P replete treatments. The shortestT t and the highest APA were found when glucose was combined with N treatment. Bioavailable PO4 was estimated usingT t and P uptake rates as derived from stoichiometric conversion of carbon based primary and bacterial production. With shorterT t, the PO4 pool declined to <1 nmol-P l?1, whereas the SRP background pool (difference between SRP and PO4) remained relatively constant (c. 50 nmol l?1). APA was inversely related to PO4 but not to SRP. Responses of specific APA and specific affinity for PO4 uptake, which are APA and PO4 uptake rates (inverse ofT t), respectively, normalized to the summed P biomass of phytoplankton and bacteria, responded consistently to the pattern and magnitude of nutrient limitation evoked in our experiments. Our results, together with a literature survey, suggest that both parameters can be useful in examining PO4 availability for the natural phytoplankton and bacteria community in P starved aquatic systems.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号