首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
地球科学   67篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
21.
In the Philippines, Integrated Coastal Management (ICM) represents the dominant response to narratives of ecosystem decline. However, there are persistent challenges to implementation, manifested in continued resource degradation, questioning of the exercise of stakeholder involvement and rising resource conflicts. This paper examines the implementation process and how the assumptions embodied in the ICM regime meet the local reality in one group of islands in the Philippine archipelago. The evidence shows how the transformation towards a supposed equilibrium state of coastal ecosystems is undermined in the face of diverging stakeholder agendas. Expected actors are disempowered by the incoherence between the policy owners’ worldview and reality, paving the way for unethical influence from elite alliances. This is coupled with a deepening of the dominance of state, international development banks, foreign aid agencies, and NGOs in promoting their respective interests. In localities such as the Babuyan Islands, when assumptions of ICM collapse it has destructive consequences for fisherfolk and the coastal environment. We conclude that if ICM is to foster an effective and equitable correction of current unsustainable exploitation patterns, then there is a need to institute improved accountability mechanisms in the devolved governance system as well as taking seriously the espoused commitment to stakeholder involvement in determining the goals and assumptions of ICM.  相似文献   
22.
As coral reef ecosystems decline in health worldwide, reef‐associated fishes are being impacted by changes to their coral reef habitats. While previous studies have shown coral reef structure to affect the demography of reef fishes, changes in reef conditions may also impact the behavior of reef fishes as they cope with altered habitats. In this study, we examined spatial patterns of intraspecific behavioral variation in the bicolor damselfish (Stegastes partitus) across the fringing reefs of Curaçao (Caribbean Sea), and explored how this behavioral variation associated with physical and social conditions on the reef. Principal components analysis (PCA) condensed physical parameters of the reef into principal component 1 (PC1), comprising depth, coral cover (%), rugosity, and average hole size (cm2), and principal component 2 (PC2), which represented the number of holes. PC1, but not PC2, increased spatially across the reef as the habitat transitioned from coral rubble in the shallows to live coral on the reef slope. This transition in reef structure was paralleled by changes in social conditions including decreases in bicolor damselfish density in habitats with higher PC1 values. The behavior of bicolor damselfish also varied spatially with greater aggression and more frequent shelter use in habitats with lower PC1 values. Path analysis revealed robust associations between this behavioral variation and physical habitat conditions of the reef, indicating that physical – rather than social – habitat variation is the primary determinant of these spatial patterns of intraspecific behavioral variation. Taken as a whole, this coupling between physical reef structure and behavior suggests that reef fish may show altered behaviors on coral reefs degraded by anthropogenic impacts.  相似文献   
23.
This paper addresses the problem of classifying minerals common in siliciclastic and carbonate rocks. Twelve chemical elements are mapped from thin sections by energy dispersive spectroscopy in a scanning electron microscope (SEM). Extensions to traditional multivariate statistical methods are applied to perform the classification. First, training and validation sets are grown from one or a few seed points by a method that ensures spatial and spectral closeness of observations. Spectral closeness is obtained by excluding observations that have high Mahalanobis distances to the training class mean. Spatial closeness is obtained by requesting connectivity. Second, class consistency is controlled by forcing each class into 5–10 subclasses and checking the separability of these subclasses by means of canonical discriminant analysis. Third, class separability is checked by means of the Jeffreys–Matusita distance and the posterior probability of a class mean being classified as another class. Fourth, the actual classification is carried out based on four supervised classifiers all assuming multinormal distributions: simple quadratic, a contextual quadratic, and two hierarchical quadratic classifiers. Overall weighted misclassification rates for all quadratic classifiers are very low for both the training (0.25–0.33%) and validation sets (0.65–1.13%). Finally, the number of rejected observations in routine runs is checked to control the performance of the SEM image acquisition and the classification. Although the contextual classifier performs marginally best on the validation set, the simple quadratic classifier is chosen in routine classifications because of the lower processing time required. The method is presently used as a routine petrographical analysis method at Norsk Hydro Research Centre. The data can be approximated by a Poisson distribution. Accordingly, the square root of the data has constant variance and a linear classifier can be used. Near orthogonal input data, enable the use of a minimum distance classifier. Results from both linear and quadratic minimum distance classifications are described briefly.  相似文献   
24.
An 11-year remotely sensed surface albedo dataset coupled with historical meteorological and stand-level forest management data for a variety of stands in Norway’s most productive logging region is used to develop regression models describing temporal changes in forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species, and two alternate multiple regression models are developed and tested following a potential-modifier approach. This result in models with statistically significant parameters (p?<?0.05) that explain a large proportion of the observed variation, requiring a single canopy modifier predictor coupled with either monthly or annual mean air temperature as a predictor of a stand’s potential albedo. Models based on annual mean temperature predict annual albedo with errors (RMSE) in the range of 0.025–0.027, while models based on monthly mean temperature predict monthly albedo with errors ranging between of 0.057–0.065 depending on the dominant tree species. While both models have the potential to be transferable to other boreal regions with similar forest management regimes, further validation efforts are required. As active management of boreal forests is increasingly seen as a means to mitigate climate change, the presented models can be used with routine forest inventory and meteorological data to predict albedo evolution in managed forests throughout the region, which, together with carbon cycle modeling, can lead to more holistic climate impact assessments of alternative forest harvest scenarios and forest product systems.  相似文献   
25.
26.
27.
The averaged spin-orbit resonant motion of Mercury is considered, with e the orbital eccentricity, and i o the orbital inclination introduced as very slow functions of time, given by any secular planetary theory. The basis is our Hamiltonian approach (D’Hoedt, S., Lemaître, A.: Celest. Mech. Dyn. Astron. 89:267–283, 2004) in which Mercury is considered as a rigid body. The model is based on two degrees of freedom; the first one is linked to the 3:2 resonant spin-orbit motion, and the second one to the commensurability of the rotational and orbital nodes. Mercury is assumed to be very close to the Cassini equilibrium of the model. To follow the motion of rotation close to this equilibrium, which varies with respect to time through e and i o , we use the adiabatic invariant theory, extended to two degrees of freedom. We calculate the corrections (remaining functions) introduced by the time dependence of e and i o in the three steps necessary to characterize the frequencies at the equilibrium. The conclusion is that Mercury follows the Cassini equilibrium (stays in the Cassini forced state), in an adiabatic behavior: the area around the equilibrium does not change by more than ${\varepsilon}$ for times smaller than ${\frac{1}{\varepsilon}}$ . The role of the inclination and the eccentricity can be dissociated and measured in each step of the canonical transformation.  相似文献   
28.
The autumn and early winter atmospheric response to the record-low Arctic sea ice extent at the end of summer 2007 is examined in ensemble hindcasts with prescribed sea ice extent, made with the European Centre for Medium-Range Weather Forecasts state-of-the-art coupled ocean–atmosphere seasonal forecast model. Robust, warm anomalies over the Pacific and Siberian sectors of the Arctic, as high as 10°C at the surface, are found in October and November. A regime change occurs by December, characterized by weaker temperatures anomalies extending through the troposphere. Geopotential anomalies extend from the surface up to the stratosphere, associated to deeper Aleutian and Icelandic Lows. While the upper-level jet is weakened and shifted southward over the continents, it is intensified over both oceanic sectors, especially over the Pacific Ocean. On the American and Eurasian continents, intensified surface Highs are associated with anomalous advection of cold (warm) polar air on their eastern (western) sides, bringing cooler temperatures along the Pacific coast of Asia and Northeastern North America. Transient eddy activity is reduced over Eurasia, intensified over the entrance and exit regions of the Pacific and Atlantic storm tracks, in broad qualitative agreement with the upper-level wind anomalies. Potential predictability calculations indicate a strong influence of sea ice upon surface temperatures over the Arctic in autumn, but also along the Pacific coast of Asia in December. When the observed sea ice extent from 2007 is prescribed throughout the autumn, a higher correlation of surface temperatures with meteorological re-analyses is found at high latitudes from October until mid-November. This further emphasises the relevance of sea ice for seasonal forecasting in the Arctic region, in the autumn.  相似文献   
29.
The concentrations of chlorophyll-a (chl-a), total suspended solids (TSS) and the absorption coefficient of colored dissolved organic matter (aCDOM(400)) are estimated in Case II waters using medium resolution imaging spectrometer (MERIS) satellite (full resolution [FR] level 1b, 300 m resolution) and AISA airborne spectrometer data acquired during a spring bloom in the Gulf of Finland, Baltic Sea on April 27, 2004. The accuracy of the estimation is analyzed using empirical band-ratio algorithms together with in situ observations that include water samples analyzed in a laboratory (variation ranges: 22–130 μg/l, 2.9–20 mg/l, and 1.29–2.61 m−1 for chl-a, TSS and aCDOM(400), respectively). Additional in situ estimates (transects) on these characteristics are available through absorption and scattering coefficients measured with an ac-9 absorption and attenuation meter installed in a flow-through system. The retrieval accuracy (R2) of all three water quality characteristics with MERIS data is close to or above 0.9, while the RMSE is 7.8 μg/l (22%), 0.74 mg/l (16%) and 0.08 m−1 (5%), for chl-a, TSS and aCDOM(400), respectively. The validity of the chl-a algorithm is tested using nine additional data points. The BIAS-error for these points is 5.2 μg/l and the RMSE is 10.6 μg/l. The effects of changes in the atmospheric characteristics on band-ratio algorithms in cases where no concurrent in situ reference data are available are analyzed using the MODerate spectral resolution atmospheric TRANSmittance algorithm and computer model (MODTRAN). The additional error due to these changes is estimated to be below 20% for the applied ratio algorithms. The water quality data available in the level 2 MERIS-product distributed by the European Space Agency did not include valid results for the date investigated here.  相似文献   
30.
Vegetation dynamics of the West African Sahel has attracted great scientific interest over the last 40?years because of the dramatic inter-decadal variability observed in the resource base of the region directly impacting on the livelihoods of the West African population. From farmers to pastoralists, agro-pastoralists and forest-users, all depend on the availability of vegetation resources and are affected by fluctuations in the available vegetation resource. Vegetation dynamics are controlled by both natural and human factors, including climate change and variability, increased concentration of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40?years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land use monitoring and modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号