首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   23篇
  国内免费   3篇
地球科学   642篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   22篇
  2014年   25篇
  2013年   50篇
  2012年   37篇
  2011年   21篇
  2010年   24篇
  2009年   39篇
  2008年   24篇
  2007年   30篇
  2006年   22篇
  2005年   32篇
  2004年   23篇
  2003年   19篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   11篇
  1998年   7篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有642条查询结果,搜索用时 15 毫秒
81.
82.
The formation of the supercontinent Pangaea during the Permo–Triassic gave rise to an extreme monsoonal climate (often termed ‘mega-monsoon’) that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2·4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red–green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.  相似文献   
83.
The M w 3.2-induced seismic event in 2006 due to fluid injection at the Basel geothermal site in Switzerland was the starting point for an ongoing discussion in Europe on the potential risk of hydraulic stimulation in general. In particular, further development of mitigation strategies of induced seismic events of economic concern became a hot topic in geosciences and geoengineering. Here, we present a workflow to assess the hazard of induced seismicity in terms of occurrence rate of induced seismic events. The workflow is called Forward Induced Seismic Hazard Assessment (FISHA) as it combines the results of forward hydromechanical-numerical models with methods of time-dependent probabilistic seismic hazard assessment. To exemplify FISHA, we use simulations of four different fluid injection types with various injection parameters, i.e. injection rate, duration and style of injection. The hydromechanical-numerical model applied in this study represents a geothermal reservoir with preexisting fractures where a routine of viscous fluid flow in porous media is implemented from which flow and pressure driven failures of rock matrix and preexisting fractures are simulated, and corresponding seismic moment magnitudes are computed. The resulting synthetic catalogues of induced seismicity, including event location, occurrence time and magnitude, are used to calibrate the magnitude completeness M c and the parameters a and b of the frequency-magnitude relation. These are used to estimate the time-dependent occurrence rate of induced seismic events for each fluid injection scenario. In contrast to other mitigation strategies that rely on real-time data or already obtained catalogues, we can perform various synthetic experiments with the same initial conditions. Thus, the advantage of FISHA is that it can quantify hazard from numerical experiments and recommend a priori a stimulation type that lowers the occurrence rate of induced seismic events. The FISHA workflow is rather general and not limited to the hydromechanical-numerical model used in this study and can therefore be applied to other fluid injection models.  相似文献   
84.
85.
Spatial joins are join operations that involve spatial data types and operators. Spatial access methods are often used to speed up the computation of spatial joins. This paper addresses the issue of benchmarking spatial join operations. For this purpose, we first present a WWW-based benchmark generator to produce sets of rectangles. Using a Web browser, experimenters can specify the number of rectangles in a sample, as well as the statistical distributions of their sizes, shapes, and locations. Second, using the generator and a well-defined set of statistical models we define several tests to compare the performance of three spatial join algorithms: nested loop, scan-and-index, and synchronized tree traversal. We also added two real-life data sets from the Sequoia 2000 storage benchmark. Our results show that the relative performance of the different techniques mainly depends on the selectivity factor of the join predicate. All of the statistical models and algorithms are available on the Web, which allows for easy verification and modification of our experiments.  相似文献   
86.
In this paper, we derive and study approximate balance models for nearly geostrophic shallow water flow where the Coriolis parameter is permitted to vary across the domain as long as it remains nondegenerate. This situation includes, for example, the β-plane approximation to the shallow water equations at mid-latitudes. Our approach is based on changing configuration space coordinates in the underlying variational principle in such a way that consistent asymptotics in the transformed Lagrangian leads to a degenerate Lagrangian structure. In this paper, we restrict our attention to first-order models. We show that the resulting models can be formulated in terms of an advected potential vorticity with a nonlinear vorticity inversion relation. We study the associated solvability conditions and identify a subfamily of models for which these conditions are satisfied without additional restrictions on the data. Finally, we provide the link between our framework and the theory of constrained Hamiltonian systems.  相似文献   
87.

As Arctic sea ice declines in response to climate change, a shift from thick multiyear ice to a thinner ice cover is occurring. With this transition, ice thicknesses approach a threshold below which ice no longer insulates the atmosphere from oceanic surface fluxes. While this is well known, there are no estimates of the magnitude of this threshold, nor of the proportion of sea ice area that is below this threshold as ice thins. We determine this threshold by simulating the atmospheric response to varying thicknesses, ranging from 0.0 to 2.0 m and determine that threshold to be 0.40–0.50 m. The resulting “effective” ice area is 4–14% lower than reported total ice area, as 0.39–0.97 × 106 km2 of the total ice area falls below the threshold throughout the twentieth century, including during notable ice minima. The atmosphere above large non-insulating ice-covered regions is susceptible to more than 2 °C of warming despite ice presence. Observed mean Arctic Ocean ice thickness is projected to fall below this threshold as early as the mid-2020s. Studies on ocean–atmosphere interactions in relation to sea ice area should focus on this insulating sea ice area, where ice is at least 0.40–0.50 m thick, and treat ice regions below 0.40–0.50 m thickness with caution.

  相似文献   
88.
Organic carbon (OC) burial is an important process influencing atmospheric CO2 concentration and global climate change; therefore it is essential to obtain information on the factors determining its preservation. The Southern Ocean (SO) is believed to play an important role in sequestering CO2 from the atmosphere via burial of OC. Here we investigate the degradation of organic-walled dinoflagellate cysts (dinocysts) in two short cores from the SO to obtain information on the factors influencing OC preservation. On the basis of the calculated degradation index kt, we conclude that both cores are affected by species-selective aerobic degradation of dinocysts. Further, we calculate a degradation constant k using oxygen exposure time derived from the ages of our cores. The constant k displays a strong relationship with pore-water O2, suggesting that decomposition of OC is dependent on both the bottom- and pore-water O2 concentrations.  相似文献   
89.
90.
Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号