首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  国内免费   1篇
地球科学   41篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
11.
Although stream temperature energy balance models are useful to predict temperature through time and space, a major unresolved question is whether fluctuations in stream discharge reduce model accuracy when not exactly represented. However, high‐frequency (e.g., subdaily) discharge observations are often unavailable for such simulations, and therefore, diurnal streamflow fluctuations are not typically represented in energy balance models. These fluctuations are common due to evapotranspiration, snow pack or glacial melt, tidal influences within estuaries, and regulated river flows. In this work, we show when to account for diurnally fluctuating streamflow. To investigate how diurnal streamflow fluctuations affect predicted stream temperatures, we used a deterministic stream temperature model to simulate stream temperature along a reach in the Quilcayhuanca Valley, Peru, where discharge varies diurnally due to glacial melt. Diurnally fluctuating streamflow was varied alongside groundwater contributions via a series of computational experiments to assess how uncertainty in reach hydrology may impact simulated stream temperature. Results indicated that stream temperatures were more sensitive to the rate of groundwater inflow to the reach compared with the timing and amplitude of diurnal fluctuations in streamflow. Although incorporating observed diurnal fluctuations in discharge resulted in a small improvement in model RMSE, we also assessed other diurnal discharge signals and found that high amplitude signals were more influential on modelled stream temperatures when the discharge peaked at specific times. Results also showed that regardless of the diurnal discharge signal, the estimated groundwater flux to the reach only varied from 1.7% to 11.7% of the upstream discharge. However, diurnal discharge fluctuations likely have a stronger influence over longer reaches and in streams where the daily range in discharge is larger, indicating that diurnal fluctuations in stream discharge should be considered in certain settings.  相似文献   
12.
We have determined the 2-oxo-propyl CH3C(O)CH2 (sometimes called 1-methylvinoxy or acetonyl) radical yield for the reaction of acetone with OH radical relative to the 2-oxo-propyl yields for the reactions of F- and Cl atoms with acetone using the Discharge Flow technique. The 2-oxo-propyl radical has been monitored by Laser Induced Fluorescence LIF at short reaction times in the systems: OH + acetone (R1), F + acetone (R2), and Cl + acetone (R3). From these measurements we have deduced the branching ratio for the 2-oxo-propyl radical formation in the title reaction to be in the range 0.8 R 1.  相似文献   
13.
Green roofs are a form of green infrastructure aimed at retaining or slowing the movement of precipitation as stormwater runoff to sewer systems. To determine total runoff versus retention from green roofs, researchers and practitioners alike employ hydrologic models that are calibrated to one or more observed events. However, questions still remain regarding how event size may impact parameter sensitivity, how best to constrain initial soil moisture (ISM), and whether limited observations (i.e., a single event) can be used within a calibration-validation framework. We explored these questions by applying the storm water management model to simulate a large green roof located in Syracuse, NY. We found that model performance was very high (e.g., Nash Sutcliffe efficiency index > 0.8 and Kling-Gupta efficiency index > 0.8) for many events. We initially compared model performance across two parameterizations of ISM. For some events, we found similar performance when ISM was varied versus set to zero; for others, varying ISM yielded higher performance as well as greater water balance closure. Within a calibration-validation framework, we found that calibrating to larger events tended to produce moderate to high performance for other non-calibration events. However, very small storms were notoriously difficult to simulate, regardless of calibration event size, as these events are likely fully retained on the roof. Using regional sensitivity analysis, we confirmed that only a subset of model parameters was sensitive across 16 events. Interestingly, many parameters were sensitive regardless of event size, though some parameters were more sensitive when simulating smaller events. This emphasizes that storm size likely influences parameter sensitivity. Overall, we show that while calibrating to a single event can achieve high performance, exploring simulations across multiple events can yield important insight regarding the hydrologic performance of green roofs that can be used to guide the gathering of in situ properties and observations for refining model frameworks.  相似文献   
14.
Urban surface temperature is hazardously higher than surrounding regions (so-called urban heat island effect UHI). Accurately simulating urbanization-induced temperature hazard is critical for realistically representing urban regions in the land surface-atmosphere climate system. However, inclusion of urban landscapes in regional or global climate models has been overlooked due to the coarse spatial resolution of these models as well as the lack of observations for urban physical properties. Recently, National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) observations illustrate important urban physical properties, including skin temperature, surface albedo, surface emissivity, and leaf area index, It is possible to identify the unique urban features globally and thus simulate global urban processes. An urban scheme is designed to represent the urban-modified physical parameters (albedo, emissivity, land cover, roughness length, thermal and hydraulic properties) and to include new, unique physical processes that exist in urban regions. The urban scheme is coupled with National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) and single column coupled NCAR Community Atmosphere Model CAM2/CLM2 to assess the mechanisms responsible for UHI. There are two-steps in our model development. First, satellite observations of albedo, emissivity, LAI, and in situ observed thermal properties are updated in CLM2 to represent the first-order urban effects. Second, new terms representing the urban anthropogenic heat flux, storage heat flux, and roughness length are calculated in the model. Model simulations suggest that human activity-induced surface temperature hazard results in overlying atmosphere instability and convective rainfall, which may enhance the possibility of urban flood hazard.
Menglin JinEmail:
  相似文献   
15.
In this study we use the term record threshold of a historical earthquake for the seismic intensity (EMS92) in an area where a given percentage P of the serial sources of places have recorded the event as been noticed there. The record threshold is understood as a limiting measure, below which warranted statements about the intensity cannot be given. P defines the acceptable uncertainty and can be chosen according to the demands of the special task, for instance, 10%. It is shown that the record threshold of historical earthquakes is not the same as the human perceptibility threshold of earthquakes of the 20th Century. The historical sources have to be selected using criteria such as completeness and homogenity of data. This demand is approximately met by inquiries for sources covering an area greater than the expected felt area of the historical earthquake.The Friuli event of 25 January 1348 is presented as an example. It is compared with the well known Friuli event of 6 May 1976 in order to calibrate its intensity. The record threshold of the 1348 event was probably IV or less than IV EMS92 for P = 10%. The method, properly modified, can be applied to different cultural epochs and areas. This result throws a light on the possible error in determining the felt area of historical events.  相似文献   
16.
Northwest Africa 7533, a polymict Martian breccia, consists of fine‐grained clast‐laden melt particles and microcrystalline matrix. While both melt and matrix contain medium‐grained noritic‐monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast‐laden melt rocks contain clump‐like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene‐plagioclase clump‐aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic‐monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned‐pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr‐bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti‐bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni‐poor pyroxene clasts which are from pristine rocks. Clast‐laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al. 2013 ) and a 147Sm‐143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al. 2016 ) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014 ). This record of protolith interaction with atmosphere‐hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015 ), and formation of Ni‐bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015 ).  相似文献   
17.
18.
19.
Climate change is altering river temperature regimes, modifying the dynamics of temperature‐sensitive fishes. The ability to map river temperature is therefore important for understanding the impacts of future warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR surveys of rivers remain expensive. Recent drone‐based TIR systems present a potential solution to this problem. However, information regarding the utility of these miniaturised systems for surveying rivers is limited. Here, we present the results of several drone‐based TIR surveys conducted with a view to understanding their suitability for characterising river temperature heterogeneity. We find that drone‐based TIR data are able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal imagery suffers from temperature drift‐induced bias, which prevents the extraction of accurate temperature data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed important light on the factors influencing drone‐based TIR data quality and suggest that further technological development is required to enable the extraction of robust river temperature data. Nonetheless, this technology represents a promising approach for augmenting in situ sensor capabilities and improved quantification of advective inputs to rivers at intermediate spatial scales between point measurements and “conventional” airborne or satellite remote sensing.  相似文献   
20.
Abstract— In order to investigate whether or not 26Al can be used as a fine‐scale chronometer for early solar system events we measured, with an ion microprobe, Mg isotopes and Al/Mg ratios in separated plagioclase, olivine, and pyroxene crystals from the H4 chondrites Ste Marguerite (SM), Forest Vale (FV), Beaver Creek and Quenggouk and compared the results with the canonical 26Al/27Al ratio for calcium‐aluminum‐rich inclusions (CAIs). For SM and FV, Pb/Pb and Mn‐Cr ages have previously been determined (Göpel et al., 1994; Polnau et al., 2000; Polnau and Lugmair, 2001). Plagioclase grains from these two meteorites show clear excesses of 26Mg. The 26Al/27Al ratios inferred from these excesses and from isotopically normal Mg in pyroxene and olivine are (2.87 ± 0.64) × 10?7 for SM and (1.52 ± 0.52) × 10?7 for FV. The differences between these ratios and the ratio of 5 times 10?5 in CAIs indicate time differences of 5.4 ± 0.1 Ma and 6.1 ± 0.2 Ma for SM and FV, respectively. These differences are in agreement with the absolute Pb/Pb ages for CAIs and SM and FV phosphates but there are large discrepancies between the U‐Pb and Mn‐Cr system for the relative ages for CAIs, SM and FV. For example, Mn‐Cr ages of carbonates from Kaidun are older than the Pb/Pb age of CAIs. However, even if we require that CAIs are older than these carbonates, the time difference between this “adjusted” CAI age and the Mn‐Cr ages of SM and FV require that 26 Al was widely distributed in the early solar system at the time of CAI formation and was not mostly present in CAIs, a feature of the X‐wind model proposed by Shu and collaborators (Gounelle et al., 2001; Shu et al., 2001). From this we conclude that there was enough 26Al to melt small planetary bodies as long as they formed within 2 Ma of CAIs, and that 26Al can serve as a fine‐scale chronometer for early solar system events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号