首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   25篇
工业技术   216篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   18篇
  2018年   22篇
  2017年   18篇
  2016年   15篇
  2015年   16篇
  2014年   14篇
  2013年   18篇
  2012年   22篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有216条查询结果,搜索用时 687 毫秒
41.
This study focuses on the modelling and simulation of local mechanical properties of compacted graphite iron cast at different section thicknesses and three different levels of silicon, ranging from about 3.6% up to 4.6%. The relationship between tensile properties and microstructure is investigated using microstructural analysis and statistical evaluation. Models are generated using response surface methodology, which reveal that silicon level and nodularity mainly affect tensile strength and 0.2% offset yield strength, while Young′s modulus is primarily affected by nodularity. Increase in Si content improves both the yield and tensile strength, while reduces elongation to failure. Furthermore, mechanical properties enhance substantially in thinner section due to the high nodularity. The obtained models have been implemented into a casting process simulation, which enables prediction of local mechanical properties of castings with complex geometries. Very good agreement is observed between the measured and predicted microstructures and mechanical properties, particularly for thinner sections.  相似文献   
42.
This study concerns the synthesis of novel multi block polyurethane (PU) copolymers containing eco‐friendly segments, taking the advantage of ionic liquids (IL)s under microwave irradiation. For this, L ‐leucine anhydride cyclodipeptide (LAC) was prepared and then a new class of poly(ether‐urethane‐urea)s (PEUUs) was synthesized with two types of ILs, including room temperature imidazolium (RTIL)s and molten ammonium type ILs. ILs were used as reaction media and PUs were prepared via two‐step polymerization method. Polymerization reaction was also conducted under conventional heating method in N‐methyl pyrrolidone (NMP) as reaction solvent. In the first step, 4,4′‐methylene‐bis(4‐phenylisocyanate) (MDI) was reacted with LAC to produce isocyanate‐terminated poly(imide‐urea) oligomers as hard segment. Chain extension of the resulting prepolymer with polyethyleneglycol (PEG) of molecular weights of 400 (PEG‐400) was the second step to furnish a series of new PEUUs. These multiblock copolymers are optically active, thermally stable and soluble in amide‐type solvents. PEUUs prepared in ILs under microwave irradiation showed more phase separation and crystallinity than PEUU prepared under conventional method. Some structural characterization and physical properties of these PEUUs, prepared under different methods, are reported and compared. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
43.
Titanium oxide thin films were deposited by DC reactive magnetron sputtering on ZnO (80 nm thickness)/soda-lime glass and SiO2 substrates at different gas pressures. The post annealing on the deposited films was performed at 400 °C in air atmosphere. The results of X-ray diffraction (XRD) showed that the films had anatase phase after annealing at 400 °C. The structure and morphology of deposited layers were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface grain size and roughness of TiO2 thin films after annealing were around 10-15 nm and 2-8 nm, respectively. The optical transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer and photocatalytic activities of the samples were evaluated by the degradation of Methylene Blue (MB) dye. Using ZnO thin film as buffer layer, the photocatalytic properties of TiO2 films were improved.  相似文献   
44.
In this study, we compare the preparation of ovalbumin (OVA) and α‐lactalbumin (α‐LA) nanoparticles using different desolvating agents (ethanol, acetone, and methanol) and water: desolvating agent volume ratios (1:3, 1:4, 1:5, 1:10, and 1:20). Also the effects of protein solution temperature (25, 50, and 80 ℃) on the size of nanoparticles and the stability of crosslinked nanoparticles for 30 d were studied. OVA and α‐LA were shown to be good candidates for nanoparticulation and nanoparticles in the range of 60 to 230 nm were obtained. The comparison between the 2 proteins offers guidance to optimize OVA and α‐LA nanoparticle fabrication and to efficiently obtain nanoparticles with desired characteristics. The particle sizes of OVA nanoparticles were found to be in the range of 60 to 160 nm, and the particle sizes of α‐LA were between 150 and 230 nm. The sizes varied with different desolvating agents: for OVA, ethanol, and methanol both produced nanoparticles smaller than 100 nm; for α‐LA, methanol produced the smallest nanoparticles. Water: desolvating agent ratios, in the studied range, did not show a significant effect on the particle sizes for both OVA and α‐LA nanoparticles. The size and morphology of the nanoparticles were found to change when the protein solutions were heated up to 50 and 80 ℃ and cooled down before nanoparticulation and most nanoparticles had a smaller diameter.  相似文献   
45.
The impact of the exact temporal pulse structure on the potential cell and tissue sparing of ultra-high dose-rate irradiation applied in FLASH studies has gained increasing attention. A previous version of our biophysical mechanistic model (UNIVERSE: UNIfied and VERSatile bio response Engine), based on the oxygen depletion hypothesis, has been extended in this work by considering oxygen-dependent damage fixation dynamics on the sub-milliseconds scale and introducing an explicit implementation of the temporal pulse structure. The model successfully reproduces in vitro experimental data on the fast kinetics of the oxygen effect in irradiated mammalian cells. The implemented changes result in a reduction in the assumed amount of oxygen depletion. Furthermore, its increase towards conventional dose-rates is parameterized based on experimental data from the literature. A recalculation of previous benchmarks shows that the model retains its predictive power, while the assumed amount of depleted oxygen approaches measured values. The updated UNIVERSE could be used to investigate the impact of different combinations of pulse structure parameters (e.g., dose per pulse, pulse frequency, number of pulses, etc.), thereby aiding the optimization of potential clinical application and the development of suitable accelerators.  相似文献   
46.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   
47.
Polyetheramine (PEA)-modified epoxies with various types of PEAs were prepared and respective effects on characteristics of epoxy networks were studied. The used PEAs were polyethylene glycol diamine (PEG-amine) and polypropylene glycol diamine (PPG-amine) with two different molecular weights (i.e., 200 and 400 g mol−1). According to mechanical tests, the structural parameters of PEAs played an important role in final properties of epoxy/amine systems. PEG400-amine and PPG200-amine had the highest and lowest effects on the properties of epoxy networks, respectively. Whereas 10 phr PEG400-amine increased critical stress intensity factor (KIC) and critical strain energy release rate (GIC) of the epoxy up to 82 and 294%, the same number of PPG200-amine chains caused to increase the KIC and GIC up to 11 and 34%. This discrepancy could be assigned to higher flexibility index (φ = 26.22), longer chain length (~27 atoms), and higher secondary interactions [δ = 9.69 (cal cm−3)0.5] of PEG400-amine in comparison with PPG200-amine [with φ = 8.08, ~10 atoms in chain, and δ = 8.98 (cal cm−3)0.5]. Shear yielding as a toughening mechanism was proposed based on microscopy of the crack tips. These in-depth studies could uncover underlying structure–property relationships in a relevant class of PEA-like modifiers, shedding light on the future design of top-performing homogeneous tough polymer networks. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47121.  相似文献   
48.
Froth flotation is the most preferred processing technique for the enrichment of low-grade sulfides. Bioleaching is an eco-friendly method for metallurgical extraction from flotation products. Flotation reagents (collectors, frothers, etc.) have various impacts on bioleaching and bacterial activities. In this investigation, the effect of a number of sulfide flotation collectors [potassium amyl-xanthate, potassium isobutyl-xanthate, sodium ethyl-xanthate, potassium isopropyl-xanthate, and Dithiophosphate (Aero3477)], and frothers (pine oil and methyl isobutyl carbinol) with different dosages is studied on Leptospirillum ferrooxidans activities. The results of various measurements indicated that these flotation chemicals can have positive or negative influences on the bacterial activities, based on their chemical compositions and/or concentrations. These results can extensively be used for the selection of flotation reagents when bioleaching is chosen as the metallurgical extraction method after flotation enrichment.  相似文献   
49.
This paper describes a simple method of image compression based on representing the grey level variations across the rows of an image using polylines. Data compression is achieved because only the x-coordinates (or the difference in x-coordinates) and the grey levels of points at the ends of the line segments that make up the polylines are stored, rather than the grey levels of all the pixels. The operational structure of the method lends itself readily to parallel processing to achieve compression in real time. Experimental results obtained from the analysis of retinal and various other images indicate unnoticeable distortion and a reduction in the amount of image data to be stored by 66% on average.  相似文献   
50.
Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate. Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor. The shake flask tests were performed with different inoculum size, solids density, pH, and temperature in order to identify optimum conditions. The highest amount of copper elimination, 75% was obtained with extreme thermophilic microorganisms (at 12% inoculation, 10% solids, 65 °C and a pH of 1.5). The highest copper elimination by mesophilic microorganisms was 55% (at 12% inoculation, 5% solids, 30 °C at pH 2). The optimum conditions in shake flask tests were applied to 7 days batch tests in a 50-L bioreactor. Extreme thermophilic experiment gave the best copper elimination of 60% (at 12% inoculation, 10% solids, 65 °C and pH 1.5). Mesophilic test removed 50% of the copper (at 12% inoculation, 10% solids, 35 °C at pH 2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号