首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   25篇
工业技术   216篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   18篇
  2018年   22篇
  2017年   18篇
  2016年   15篇
  2015年   16篇
  2014年   14篇
  2013年   18篇
  2012年   22篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1988年   1篇
  1981年   1篇
排序方式: 共有216条查询结果,搜索用时 859 毫秒
21.
In this paper, the effect of reinforcing the adhesive on the creep behaviour of single lap joints was studied experimentally. The reinforcement was in the form of fibre and three types of fibres namely aramid, carbon and glass were used. The test was performed at a temperature above the glass transition temperature of the adhesive. The effect of fibre orientation was also investigated. The failure time and initial strain for all the specimens were evaluated and compared to the un-reinforced adhesive joint. According to the results, adding fibres in the bondline considerably affects both the initial strain and the failure time and these effects are dependent on the fibre type and orientations. The fracture surfaces of the specimens were also studied to investigate the failure mechanisms of the reinforced adhesive in creep. The fibre breakage was observed along with adhesive and cohesive failures.  相似文献   
22.
23.
In this paper novel centralized and decentralized routing control strategies based on minimization of the worst-case queuing length are proposed. The centralized routing problem is formulated as an Hinfin optimal control problem to achieve a robust routing performance in presence of multiple and unknown fast time-varying network delays. Unlike similar previous work in the literature the delays in the queuing model are assumed to be unknown and time-varying. A Linear Matrix Inequality (LMI) constraint is obtained to design a delay-dependent Hinfin controller. The physical constraints that are present in the network are then expressed as LMI feasibility conditions. Our proposed centralized routing scheme is then reformulated in a decentralized frame work. This modification yields an algorithm that obtains the "fastest route", increases the robustness against multiple unknown time-varying delays, and enhances the scalability of the algorithm to large scale traffic networks. Simulation results are presented to illustrate and demonstrate the effectiveness and capabilities of our proposed novel dynamic routing strategies.  相似文献   
24.
25.
26.
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.  相似文献   
27.
Fuel cell and renewable-based poly-generation plants (PGPs) are proven as advanced technologies for multiple generation purposes. To limit the greenhouse gas emissions, an innovative PGP generating electricity, cooling, desalinated water, and hydrogen is proposed in the current study. The system consists of a solid oxide fuel cell as a prime mover integrated with a gas turbine, a biomass combustion chamber, an organic Rankine cycle, an ejector refrigeration cycle, a desalination unit, and a proton exchange membrane electrolyzer integrated with solar collectors. As the most effective tools for performance evaluation, exergoeconomic, and environmental analyses have been applied. The system produces electricity of 4.4 MW, refrigeration capacity of 0.16 MW, and desalinated water of 0.96 kg/s. The attained freshwater enters the electrolyzer during 12 daylight hours, leading to hydrogen and sanitary water generation with the values of 1.55 g/s and 0.94 kg/s, respectively. The cost per unit exergy and the total cost rate of the products are 11.28 $/GJ, 223 $/h, correspondingly. Carbon dioxide emission of the system is estimated to be 10.79 kmol/MWh. According to the evaluation, the total cost rate increases with increasing current density and fuel cell inlet temperature and decreasing fuel utilization factor.  相似文献   
28.
In this article, the influence of AA2024 and AA5083 coarse grains on mechanical properties and failure mechanisms of AA5083-5wt. %B4C tri-modal composite has been discussed. AA2024 and AA5083 powders (<100 µm) were added to mechanically milled AA5083-5 wt.%B4C powders in 25 and 50 wt.% and the mixtures were consolidated using the hot press and hot extrusion techniques. Results indicated that by adding AA2024 and AA5083 powders as coarse grains, hardness and tensile strength of AA5083-5 wt.%B4C composite decreased but ductility increased. Moreover, by adding AA2024 powders as coarse grains, fracture mode changed and cracks tended to grow through along AA2024/AA5083-5 wt.%B4C interface rather than being arrested or deflected. It seemed that dislocation mobility and the interface between coarse grains and ultra-fine grains had the main role in determining the mechanical properties and failure mechanisms in tri-modal AA5083-B4C composites.  相似文献   
29.
Homo‐ and copolymers of vinyl esters including vinyl acetate (VAc) and vinyl benzoate (VBz) were synthesized via the reverse iodine transfer radical polymerization technique. Polymerization was carried out in the presence of iodine as the in situ generator of the transfer agent and 2,2′‐azobis(isobutyronitrile) as the initiator at 70 °C. Reverse iodine transfer radical homopolymerization of VAc and VBz led to conversions of 76 and 57%, number‐average molecular weights of 8266 and 9814 g mol?1 and molecular weight distributions of 1.58 and 1.49, respectively. The microstructure of the synthesized polymers was investigated in detail using gel permeation chromatography, 1H NMR, 13C NMR and distortionless enhancement of polarization transfer (135° decoupler pulse) techniques. Relatively narrow molecular weight distribution and controlled and predictable trend of molecular weight versus conversion were observed for the synthesized polymers, showing that reverse iodine transfer radical homo‐ and copolymerization of VAc and VBz proceeded with controlled characteristics. Results of molecular weight and its distribution along with the 1H NMR spectra recorded for homo‐ and copolymers indicated that side reactions can occur during the course of polymerization with a significant contribution when VAc, even in a small amount, was present in the reaction mixture. This can result in polymer chains with aldehyde dead end and broadening of the molecular weight distribution. © 2015 Society of Chemical Industry  相似文献   
30.

Opportunistic routing is a promising routing paradigm which increases the network throughput. It forces the sender’s neighbors, who successfully overheard the transmitted packet, to participate in the packet forwarding process as intermediate forwarding nodes. As a seminal opportunistic routing protocol, MORE combines network coding idea with opportunistic routing to eliminate the need for strict coordination among active forwarding nodes. In this paper, we show that MORE performance does not scale well with the route length, especially when the route length goes beyond two hops. Also, we found that MORE fails to establish a working opportunistic route in sparse networks. Clearly, the network throughput is directly influenced by both the quantity and quality of forwarding nodes, and their cooperation order. In this paper, we propose a new forwarder selection mechanism which considers the route length, link qualities, the distance from the source, and nodes density. It eliminates the occasional route disconnectivity happening in MORE and improves the quality of the established opportunistic routes. The simulation result indicates that our proposal always outperforms MORE when dealing with long opportunistic routes.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号