首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
工业技术   50篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   9篇
  2010年   3篇
  2009年   10篇
  2008年   1篇
  2004年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
11.
This study investigates the effect of silica and alumina contents on setting, phase development, and physical properties of high calcium fly ash (ASTM Class C) geopolymers. The characteristic rapid setting properties and, hence, limited workability range of high calcium fly ash geopolymers has restricted both development and potential application of these binder systems compared to conventional geopolymer binders derived from bituminous coal, i.e., (ASTM Class F) sources or from calcined kaolin feedstocks. For this study, control of setting and hardening properties were investigated by adjusting SiO2/Al2O3 ratio of the starting mix, via series of mixes formulated with varying SiO2 or Al2O3 contents to achieve SiO2/Al2O3 in the range 2.87–4.79. Foremost is the observation that the effect of varying silica and alumina in high calcium fly ash systems on setting and hardening properties is markedly different from that observed for traditional Class F geopolymer systems. Overall, increases in either silica or alumina content appear to shorten the setting time of high calcium-based systems unlike conventional geopolymer systems where increasing Al2O3 accelerates setting. The setting process was associated primarily with CSH or CASH formation. Furthermore, there appears to be a prevailing SiO2/Al2O3 ratio that prolongs setting, rather than Ca2+ ion content itself, while NASH primarily contributes to strength development. SiO2/Al2O3 ratios in the range of 3.20–3.70 resulted in products with highest strengths and longest setting times. These results suggest that initial predominance of Ca2+ ions and its reactions effectively help maintaining a SiO2/Al2O3 ratio at which amorphous geopolymer phase is stable to influence setting and initial strength development.  相似文献   
12.
This research studied the improvement of the geopolymerization of bottom ash (BA) by incorporating fly ash (FA) and using flue gas desulfurization gypsum (FGDG) as additive. The BA:FA ratios of 100:0, 75:25, 50:50, 25:75, and 0:100 were used as the blended source materials. The source materials were then replaced with 0%, 5%, 10%, and 15% of FGDG. NaOH, sodium silicate and temperature curing were used to activate the geopolymer. Test results indicated that the increase in FA content in the BA–FA blends improved the strengths of geopolymer mortars owing to the high glassy phase content and high reactivity of FA compared to those of BA. The use of up to 10% of FGDG as additive also significantly increased the strengths of geopolymer. In this case, the compressive strength enhancement was due to the increase in the Al3+ leached from BA in the presence of SO42- and the formation of additional calcium silicate hydrate.  相似文献   
13.
In this paper, 90-W microwave radiation for 5 min plus a shortened heat curing period was applied to cure the fresh geopolymer paste. Results showed that microwave radiation contributed to the dissolution of fly ash in the alkaline solution. Numerous gel formations were observed in microscopic scale. This resulted in a dense composite and strong bonding between the fly ash and the geopolymer matrix leading to high strength gain compared to those of the control pastes cured at 65 °C for 24 h. In addition, resistances to the sulfuric acid and sulfate attacks of the microwave geopolymer were superior to that of the control as indicated by the relatively low strength loss. The microwave radiation also helped the geopolymer attaining thermal stability as the dense matrices were obtained.  相似文献   
14.
Solar energy is an important source of renewable and sustainable energy. Thailand is near the equator and thus experiences hot weather throughout the year. The average maximum temperature is 35 °C and can reach 40 °C in the summer time. This outdoor heat exposure (OHE) was, therefore, used for the curing of a polypropylene (PP) fiber fiber-reinforced high-calcium fly ash geopolymer composite, in order to reduce energy consumption. Fly ash is an abundant solid waste generated from the coal-power generation process. In this research, a high-calcium fly ash was used as a source material for the geopolymer synthesis. PP fiber was also incorporated in the composites to improve tensile characteristics and control crack development. The results show that the incorporation of PP fiber in composites led to improved tensile strength, crack control, and resistance to acid solution. OHE could thus be used as an energy source for the heat curing of high-calcium fly ash PP-fiber geopolymers, resulting in a strong matrix.  相似文献   
15.
The microstructural evolution, non‐Ohmic properties, and giant dielectric properties of CaCu3Ti4?xGexO12 ceramics (x=0‐0.10) are systematically investigated. The Rietveld refinement confirms the existence of a pure CaCu3Ti4O12 phase in all samples. Significantly enlarged grain sizes of CaCu3Ti4?xGexO12 ceramics are associated with the liquid phase sintering mechanism. Enhanced dielectric permittivity from 6.90×104 to 1.08×105 can be achieved by increasing Ge4+ dopant from x=0‐0.10, whereas the loss tangent is remarkably reduced by a factor of ≈10. NonOhmic properties are enhanced by Ge4+ doping ions. Using impedance and admittance spectroscopies, the underlying mechanisms for the dielectric and nonlinear properties are well described. The improved nonlinear properties and reduced loss tangent are attributed to the enhanced resistance and conduction activation energy of the grain boundaries. The largely enhanced permittivity is closely associated with the enlarged grain sizes and the increase in the Cu+/Cu2+ and Ti3+/Ti4+ ratios, which are calculated from the X‐ray absorption near‐edge structure.  相似文献   
16.
Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geo-polymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selecte...  相似文献   
17.
The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690℃. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA,the RHA fineness, and the ratio of so dium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60℃ for 48 h.  相似文献   
18.
Pure CaCu3Ti4O12 was successfully prepared by a glycine‐nitrate process using a relatively low calcination temperature and short reaction time of 760°C for 4 h. Fine‐grained CaCu3Ti4O12 ceramics with dense microstructure and small grain size were obtained after sintering for 1 h. The nonlinear coefficient of a fine‐grained CaCu3Ti4O12 ceramic calculated in the range 1–10 mA/cm2 was found to be very high of ~16.39 with high breakdown electric field strength of 1.46 × 104 V/cm. This fine‐grained CaCu3Ti4O12 ceramic also exhibited a very low loss tangent of 0.017 at 20°C with temperature stability over the range ?55°C to 85°C. The grain growth rate of the CaCu3Ti4O12 ceramics was found to be very fast after increasing the sintering time from 1.5 to 3 h, leading to formation of a coarse‐grained CaCu3Ti4O12 ceramic with grain size of about 100–200 μm. The dielectric permittivity of this coarse‐grained ceramic was found to be as high as 1.03 × 105 with a low loss tangent of 0.054.  相似文献   
19.
In this paper, the preparation of lightweight aggregate (LWA) from rice husk ash (RHA) obtained from a biomass power plant was studied. As-received and ground RHAs were mixed with sodium hydroxide solution (NaOH) and cured to obtain the hardened sodium silicate paste. The samples were then crushed and heated to form LWA. The LWA was tested for acid and base solubility and for disintegration in boiling water. The results showed that ground RHA-LWA gave better performances in terms of expansion, solubility, and disintegration than the as-received RHA-LWA. However, the disintegration of LWA in boiling water was the main problem. It was found that the incorporation of 2-7% boric acid by weight of RHA alleviated this problem and no sign of disintegration was observed. The density of LWA of 0.20-0.40 g/cm3 was achieved.  相似文献   
20.
Influence of NaOH solution on the synthesis of fly ash geopolymer   总被引:4,自引:0,他引:4  
A study was conducted on leaching of fly ash mixed with NaOH solution and on mixing procedure for preparing geopolymer. Leaching of SiO2 and Al2O3 was investigated by mixing fly ash with NaOH solution for different time intervals and leachates were analyzed in terms of silica and alumina contents. To make geopolymer paste, separate mixing and normal mixing were used. For separate mixing, NaOH solution was mixed with fly ash for the first 10 min; subsequently sodium silicate solution was added into the mixture. For normal mixing, fly ash, sodium hydroxide and sodium silicate solution were incorporated and mixed at the same time. Geopolymers were cured at 65 °C for 48 h. Microstructure of paste and compressive strength of mortar were investigated. Results revealed that solubility of fly ash depended on concentration of NaOH and duration of mixing with NaOH. For mixing procedure, separate mixing gave slightly better strength mortar than normal mixing. High strength geopolymer mortar up to 70.0 MPa was obtained when the mixture was formulated with 10 M NaOH and sodium silicate to NaOH ratio of 1.0, and the separate mixing sequence was used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号