首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   26篇
  国内免费   2篇
工业技术   1001篇
  2023年   4篇
  2022年   11篇
  2021年   17篇
  2020年   13篇
  2019年   10篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   14篇
  2014年   26篇
  2013年   53篇
  2012年   45篇
  2011年   46篇
  2010年   44篇
  2009年   49篇
  2008年   43篇
  2007年   47篇
  2006年   43篇
  2005年   42篇
  2004年   44篇
  2003年   33篇
  2002年   32篇
  2001年   17篇
  2000年   30篇
  1999年   37篇
  1998年   38篇
  1997年   29篇
  1996年   27篇
  1995年   21篇
  1994年   17篇
  1993年   10篇
  1992年   16篇
  1991年   11篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   4篇
  1986年   9篇
  1985年   8篇
  1984年   8篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有1001条查询结果,搜索用时 0 毫秒
11.
This research focuses on the reinforcing efficiency of nanomateterials and the role of the reinforcement's dispersion and orientation on the nanocomposite's flexural and tensile moduli. Polypropylene‐based composites reinforced with (i) exfoliated graphite nanoplatelets, xGnP?, (ii) vapor grown carbon fibers, (iii) PAN‐based carbon fibers, (iv) highly structured carbon black and (v) montmorillonite clay were fabricated by extrusion and injection molding. It was found that graphite platelets are the best reinforcement in terms of flexural modulus whereas PAN‐based carbon fibers cause the largest improvement in the tensile modulus. The difference in the reinforcing efficiency during the flexural and tensile testing is attributed to (i) the degree of fiber alignment along the flow direction during injection molding, which is higher in the thinner tensile specimens than in the flex specimens; and (ii) the different deformation modes of the two tests. The importance of good dispersion of the reinforcements within the polymer matrix and of perfect contact between the two phases is emphasized comparing the experimental modulus data to theoretical predictions made using the Halpin‐Tsai and the Tandon‐Weng models. POLYM. ENG. SCI., 47:1796–1803, 2007. © 2007 Society of Plastics Engineers  相似文献   
12.
The catalytic dehydro-aromatization reaction over Mo/HZSM-5 catalyst was drastically stabilized by the co-addition of 5.4% H2 and 1.8% H2O to methane feed at 750 °C, 0.3 MPa and methane space velocity of 3000 mL g−1 h−1, suppressing the coke formation effectively, compared with single hydrogen or steam addition.  相似文献   
13.
The solvothermal reaction of mixtures of aluminum isopropoxide (AIP) and gallium acetylacetonate (Ga(acac)3) directly yielded the mixed oxides of γ-Ga2O3-Al2O3. In the solvothermal synthesis, the crystal structure of mixed oxides was controlled by the initial formation of γ-Ga2O3 nuclei. The mixed oxides prepared in diethylenetriamine have extremely high activities for selective catalytic reduction (SCR) of NO with methane as a reducing agent. With increasing crystallite size of the spinel structure, the catalytic activity increased. The ratio of the amount of methane consumed by combustion to total methane conversion was proportional to the density of acid sites on the surface of the mixed oxides. The mixed oxide catalysts prepared in diethylenetriamine had lower densities of acid sites and showed a higher methane-efficiency for CH4-SCR than those prepared in other solvents. These catalysts maintained their high activity even when the reaction was carried out under the severe conditions (i.e., high space velocity and low NO concentration).  相似文献   
14.
Alginate hydrogel has widespread applications in tissue engineering, cancer therapy, wound management and drug/cell/growth factor delivery due to its biocompatibility, hydrated environment and desirable viscoelastic properties. However, the lack of controllability is still an obstacle for utilizing it in the fabrication of 3D tissue constructs and accurate targeting in mass delivery. Here, we proposed a new method for achieving magnetic alginate hydrogel microfibers by dispersing magnetic nanoparticles in alginate solution and solidifying the magnetic alginate into hydrogel fiber inside microfluidic devices. The microfluidic devices have multilayered pneumatic microvalves with hemicylindrical channels to fully stop the fluids. In the experiments, the magnetic nanoparticles and the alginate solution were mixed and formed a uniform suspension. No aggregation of magnetic nanoparticles was found, which is crucial for flow control inside microfluidic devices. By regulating the flow rates of different solutions with the microvalves inside the microfluidic device, magnetic hydrogel fibers and nonmagnetic hydrogel fibers were fabricated with controlled sizes. The proposed method for fabricating magnetic hydrogel fiber holds great potential for engineering 3D tissue constructs with complex architectures and active drug release.  相似文献   
15.
In this study the fluoropolymers, poly(ethylene‐co‐tetrafluoroethylene) (ETFE) and poly(vinylidene fluoride) (PVDF) films, together with the radiation‐induced crosslinked polytetrafluoroethylene (cPTFE) film were compared on the basis of their preparation and properties of radiation‐grafted polymer electrolyte membranes. The polymer electrolyte membranes were prepared by radiation grafting of styrene into the base films and subsequent sulfonation. The proton conductivity and chemical stability of the three types of membranes with a similar ion exchange capacity (IEC) near 1.0 mmol/g were investigated and are discussed in detail. Although the ETFE‐based polymer electrolyte membrane was relatively more stable, its proton conductivity was lower than those of the PVDF‐ and cPTFE‐based membranes. On the other hand, the cPTFE‐based membrane showed a significantly higher proton conductivity, but its chemical stability was shorter than that of the ETFE‐based membrane. It is considered that the difference in the preparation and properties of the polymer electrolyte membranes was due to the difference in the degree of crystallinity as well as in the chemical structure of the fluoropolymer base films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1966–1972, 2007  相似文献   
16.
The reaction of mixtures of aluminum isopropoxide and gallium acetylacetonate in 1,4-butanediol or 1,5-pentanediol at high temperatures (glycothermal reaction) directly gave the γ-Ga2O3–Al2O3 solid solutions, which had high catalytic activities for selective reduction of NO using methane as the reducing agent. However, the reaction with a higher Al/(Ga+Al) charged ratio yielded the glycol derivative of boehmite as a by-product and the catalytic activity of the solid solution decreased. Therefore, synthesis of the solid solution using various glycols was examined and it was found that solid solutions with high Al contents without contamination of the glycol derivative of boehmite were obtained by using 1,6-hexanediol as a reaction medium. The solid solution exhibited a higher NO conversion than that synthesized in other glycols.  相似文献   
17.
This study concerns a comparative study of three crosslinkers, divinylbenzene (DVB), 1,2‐bis(p,p‐vinylphenyl)ethane (BVPE), and triallyl cyanurate (TAC) crosslinked poly(ethylene‐co‐tetrafluoroethylene) (ETFE)‐based radiation‐grafted membranes, which were prepared by radiation grafting of p‐methylstyrene onto ETFE films and subsequent sulfonation. The effect of the different types and contents of the crosslinkers on the grafting and sulfonation, and the properties such as water uptake, proton conductivity, and thermal/chemical stability of the resulting polymer electrolyte membranes were investigated in detail. Introducing crosslink structure into the radiation‐grafted membranes leads to a decrease in proton conductivity due to the decrease in water uptake. The thermal stability of the crosslinked radiation‐grafted membranes is also somewhat lower than that of the noncrosslinked one. However, the crosslinked radiation‐grafted membranes show significantly higher chemical stability characterized in the 3% H2O2 at 50°C. Among the three crosslinkers, the DVB shows a most pronounced efficiency on the crosslinking of the radiation‐grafted membranes, while the TAC has no significant influence; the BVPE is a mild and effective crosslinker, showing the moderate influence between the DVB and TAC crosslinkers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4565–4574, 2006  相似文献   
18.
Some stereoblind observers do not perceive depth of 3D stimuli that depends on binocular disparity. These individuals, who have no disabilities, comprise over 5% of the general population. In addition, 17–30% of nonstereoblind young and young–middle people do not use disparity information in certain 3D environments, a phenomenon known as pseudo‐stereoblindness. This study aimed to investigate the relationship between aging and the proportion of pseudo‐stereoblindness in the general population. In an experiment, 134 nonstereoblind participants, ranging in age from 17 to 83 years, judged subjective depth of 3D stimuli containing binocular disparity and pictorial depth cues. Results showed that the proportion of pseudo‐stereoblindness among young (17–24 years old) and young–middle aged observers (25–39 years old) was 29%, in both cases. However, the proportion of pseudo‐stereoblind observers increased in older populations: 65% and 82% in the middle (40–54 years old) and senior (55–83 years old) age groups, respectively. These results suggest that a number of people, especially in elderly populations, have trouble perceiving depth from binocular disparity in 3D graphic contents despite their essential ability to use disparity information.  相似文献   
19.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   
20.
Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) reinforced with organo‐montmorillonite clay nanoplatelets were investigated using anhydride‐ and amine‐curing agents. The sonication technique was used to process epoxy/clay nanocomposites. The basal spacing of clay nanoplatelets was observed by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) techniques, and transmission electron microscopy. It was found that the basal spacing of clay nanoplatelets in epoxy matrix was expanded after mixing with either DGEBA/DGEBF or methyltetrahydrophthalic‐anhydride (MTHPA) curing agent. The sonication technique provided larger d‐spacing of clay nanoplatelets. Because of the different curing temperatures, MTHPA‐cured epoxy/clay nanocomposites produced more expanded d‐spacing of clay nanoplatelets modified with methyl, tallow, bis(2‐hydroxyethyl) quaternary ammonium (MT2EtOH) than triethylenetetramine‐cured nanocomposites. Depending on the selection of curing agent and organic modification for clay nanoplatelets, the d‐spacing was expanded to be up to 8.72 nm. POLYM. ENG. SCI., 46:452–463, 2006. © 2006 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号