首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   15篇
  国内免费   1篇
工业技术   139篇
  2022年   10篇
  2021年   9篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   20篇
  2016年   10篇
  2015年   7篇
  2014年   5篇
  2013年   13篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有139条查询结果,搜索用时 625 毫秒
131.
Escherichia coli is the most extensively used host for the production of recombinant proteins. However, most of the eukaryotic proteins are typically obtained as insoluble, misfolded inclusion bodies that need solubilization and refolding. To achieve high-level expression of soluble recombinant human interferon alpha (rhIFNalpha) in E. coli, we have first constructed a recombinant expression plasmid (pGEX-hIFNalpha2b), in which we merged the hIFNalpha2b cDNA with the glutathione S-transferase (GST) coding sequence downstream of the tac-inducible promoter. Using this plasmid, we have achieved 70% expression of soluble rhIFNalpha2b as a GST fusion protein using E. coli BL21 strain, under optimized environmental factors such as culture growth temperature and inducer (IPTG) concentration. However, release of the IFN moiety from the fusion protein by thrombin digestion was not optimal. Therefore, we have engineered the expression cassette to optimize the amino acid sequence at the GST-IFN junction and to introduce E. coli preferred codon within the thrombin cleavage site. We have used the engineered plasmid (pGEX-Delta-hIFNalpha2b) and the modified E. coli trxB(-)/gor(-) (Origami) strain to overcome the problem of removing the GST moiety while expressing soluble rhIFNalpha2b. Our results show the production of soluble and functional rhIFNalpha2b at a yield of 100 mg/l, without optimization of any step of the process. The specific biological activity of the purified soluble rhIFNalpha2b was equal to 2.0 x 10(8) IU/mg when compared with the WHO IFNalpha standard. Our data are the first to show that high yield production of soluble and functional rhIFNalpha2b tagged with GST can be achieved in E. coli.  相似文献   
132.
BACKGROUND: The effects of salt on the essential oil yield and fatty acid composition of aerial parts of two marjoram varieties were investigated. Plants with 6 leaves were treated with NaCl (75mM). RESULTS: Salt treatment led to a reduction in aerial part growth. Salinity increased the fatty acid content more significantly in Tunisian variety (TV) than in Canadian variety (CV). CV showed an increase in double‐bond index (DBI) and a decrease in malondialdehyde content under salt stress, while the opposite was observed in TV. The DBI was mainly affected by a strong reduction in oleic and linoleic acids in TV, whereas a strong stimulation of linoleic acid in CV was observed. Salt decreased and increased the essential oil yield in TV and CV respectively. The main constituents of the essential oil of TV were trans‐hydrate sabinene and terpinen‐4‐ol, which showed a significant decrease under salt stress. In contrast, the main constituents of the essential oil of CV were sabinene and trans‐hydrate sabinene, which showed a significant decrease and increase respectively under salt stress. CONCLUSION: Marjoram oil is a rich source of many compounds such as essential oils and fatty acids, but the distribution of these compounds differed significantly between the two varieties studied. Copyright © 2011 Society of Chemical Industry  相似文献   
133.
Foodborne pathogens (FBP) represent an important threat to the consumers' health as they are able to cause different foodborne diseases. In order to eliminate the potential risk of those pathogens, lactic acid bacteria (LAB) have received a great attention in the food biotechnology sector since they play an essential function to prevent bacterial growth and reduce the biogenic amines (BAs) formation. The foodborne illnesses (diarrhea, vomiting, and abdominal pain, etc.) caused by those microbial pathogens is due to various reasons, one of them is related to the decarboxylation of available amino acids that lead to BAs production. The formation of BAs by pathogens in foods can cause the deterioration of their nutritional and sensory qualities. BAs formation can also have toxicological impacts and lead to different types of intoxications. The growth of FBP and their BAs production should be monitored and prevented to avoid such problems. LAB is capable of improving food safety by preventing foods spoilage and extending their shelf-life. LAB are utilized by the food industries to produce fermented products with their antibacterial effects as bio-preservative agents to extent their storage period and preserve their nutritive and gustative characteristics. Besides their contribution to the flavor for fermented foods, LAB secretes various antimicrobial substances including organic acids, hydrogen peroxide, and bacteriocins. Consequently, in this paper, the impact of LAB on the growth of FBP and their BAs formation in food has been reviewed extensively.  相似文献   
134.
The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.  相似文献   
135.
Four Tunisian virgin olive oils (VOOs), derived from varieties (Chemlali Tataouine, Zarrazi Douirat, Fakhari Douirat, and Dhokar Douirat) grown in the harsh pedoclimatic conditions of the region of Tataouine, were evaluated for their responses to microwave heating. Aside from fatty acid composition, all other evaluated parameters were affected by microwave heating, and their variations depend on the genetic factor. Chemlali Tataouine VOO exhibited the slowest biophenol degradation rate and the least diminution in oxidative stability and consequently, its total fraction and both lipidic and methanolic fractions remained unchanged with an exceptional antioxidant potential. In the remaining studied VOOs, the biophenol contents, the oxidative stability, and the antioxidant potential underwent gradual decreases; nevertheless, their levels at the longer treatment time are close to some fresh VOOs. These results should be taken into consideration when Tataouine VOOs are recommended for microwave heating.  相似文献   
136.
In this study, we demonstrate a completely novel synthesis route for producing magnetic porous silicon. The magnetic properties of this material are induced by manganese atoms. The Mn-doping in Si is achieved by ion implantation. A subsequent anodization of the substrate is done to turn it into porous silicon. Several characterization techniques, such as transmission electronic microscopy, atomic force microscopy and photoluminescence are combined to probe the structural and the optical properties of this material. Furthermore, temperature and magnetic field dependent magnetization is analyzed using superconducting quantum interference device. In addition to the well-reported structural and optical properties of the porous silicon, our Mn-doped porous silicon samples exhibit a magnetic behavior with a curie temperature (TC) higher than room temperature. These results indicate that the magnetic porous silicon can be integrated with microelectronics and photonics technologies to produce new devices, such as magnetophotonic crystals and polarized emitting diodes.  相似文献   
137.
In this study, smooth hound protein hydrolysates (SHPHs), obtained by treatment with various gastrointestinal proteases, were analyzed for their angiotensin I-converting enzyme (ACE) inhibitory activities. Protein hydrolysates were obtained by treatment with crude alkaline enzyme extract, low molecular weight (LMW) alkaline protease, trypsin-like protease and pepsin from Mustelus mustelus, and bovine trypsin. All hydrolysates exhibited inhibitory activity toward ACE. Hydrolysate generated with alkaline protease extract displayed the highest ACE inhibitory activity, and the higher inhibition activity (82.6% at 2 mg/mL) was obtained with a hydrolysis degree of 18.8%. This hydrolysate was then fractionated by size exclusion chromatography on a Sephadex G-25 into five major fractions (P1–P5). ACE inhibitory activities of all fractions were assayed, and P3 was found to display a high ACE inhibitory activity (62.24% at 1 mg/mL). P3 was then fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and ten fractions of ACE inhibitors were found (F1–F10). Sub-fraction F3 showed the strongest ACE inhibitory activity, being able to suppress more than 60% of initial enzyme activity at a concentration of 100 μg/mL. The amino acid sequence of peptide F3 was determined by ESI/MS and ESI–MS/MS as Ala-Gly-Ser, and the IC50 value for ACE inhibitory activity was 0.13 ± 0.03 mg/mL. Further, purified peptide F3 maintained inhibitory activity even after in vitro digestion with gastrointestinal proteases in order to demonstrate gastrointestinal stability digestion to enable oral application. These results indicate that smooth hound protein hydrolysate possesses potent antihypertensive activity.  相似文献   
138.
Journal of Computational Electronics - One of the challenges in antenna analysis is achieving concordance between the results of a purely theoretical numerical method application and commercial...  相似文献   
139.
Ayed  Sourour  Othmani  Afef  Bouhaouel  Imen  Rasâa  Neila  Othmani  Syrine  Amara  Hajer Slim 《SILICON》2022,14(4):1731-1741
Silicon - Silicon (Si), a nutrient that currently arousing more and more interest from researchers, particularly in relation to water deficit resistance for durum wheat (Triticum turgidum L. ssp....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号