首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   12篇
生物科学   133篇
  2021年   1篇
  2020年   2篇
  2018年   5篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   9篇
  2007年   2篇
  2006年   8篇
  2005年   5篇
  2004年   10篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   8篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
1.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
2.
Abstract— The amount of α-melanocyte-stimulating hormone (α-MSH) in the entire hypothalamus as well as the amount of α-MSH in free granule and synaptosome fractions of hypothalamic homogenates was investigated throughout the lifespan of female rats (1-24 months). A 900 g supernatant fluid was prepared from hypothalami following homogenization in an iso-osmotic sucrose solution, and free granules and synaptosomes containing α-MSH were fractionated by means of continuous sucrose density gradient centrifugation. α-MSH was quantified by radioimmunoassay. The total amount of α-MSH in the hypothalamus, as well as the amount in free granules and synaptosomes prepared from hypothalami increased progressively from the 1st to the 5th month of life, and this increase was more pronounced in the free granules than in the synaptosomes. On the other hand, the amount of α-MSH in the hypothalamus and the amount present in free granules and synaptosomes prepared from 5-24-month-old animals decreased with age, and this decrease appeared to proceed at similar rates in both subcellular compartments. Based on these results, it is suggested that ageing of α-MSH neurons in the hypothalamus is accompanied by a degeneration of the axons and/or an alteration in the biosynthetic and degradative activities of the neuron.  相似文献   
3.
4.
5.
In determining the mechanism of the chemokinetic action of the thiol protease inhibitor, E-64, in endothelial cell monolayers subjected to wounding, we synthesized succinyl-leucyl-agmatine (SLA), an analogue of E-64 that lacked the epoxy group and protease inhibitory effect. We observed that this analogue retained its chemokinetic effect on wounded endothelial cells. Its stimulatory action on endothelial cell polarization response to wounding was rapid and associated with directed cell migration. Furthermore, its effect on cellular polarization was blocked by protein kinase C (PKC) inhibitors and mimicked by pharmacologic agents that stimulated PKC activity. To determine if SLA's chemokinetic action was mediated by protein kinase C activation, we compared the effects of SLA and the tumor promoter phorbol myristate acetate (PMA) on the translocation of PKC activity in endothelial cells. We observed that both SLA and PMA induced the translocation of PKC activity from the cytosolic to the particulate fraction of the cells. We also observed that both SLA and PMA induced the phosphorylation of two proteins (Mr 23.4 and 36.5 kDa) in intact 32P-labeled cells. Thus, SLA stimulates the endothelial cell locomotor response to wounding by stimulating PKC activity.  相似文献   
6.
Homogenates of male rat hypothalami were fractionated by means of differential centrifugation, and α-melanocyte-stimulating hormone (α-MSH) in the various fractions was quantified by radioimmunoassay. Of the total quantity of α-MSH in the homogenate, 36% was recovered in the 11,500 g pellet and 31% sedimented between 11,500 and 105,000 g. α-MSH was not detected in the 105,000 g supernatant fluid. When the 900 g supernatant fluid was fractionated on continuous sucrose density gradients at non-equilibrium conditions, two populations of particles containing α-MSH were observed. When fractionated at equilibrium conditions, the two populations were recovered in a single band. These sedimentation characteristics indicate that the particles that contain α-MSH differ in size but are similar in density. After hypo-osmotic shock, the large particles containing α-MSH were not demonstrable, whereas the small particles appeared to be resistant to such treatment. In their sedimentation, the particles containing α-MSH were indistinguishable from particles containing thyrotropin releasing hormone (TRH) but were separable from those that contained luteinizing hormone releasing hormone (LHRH). It is suggested that the large particles containing α-MSH are synaptosomes.  相似文献   
7.
Abstract— The 900 g supernatant fluid prepared from male rat hypothalamic homogenates was fractionated by means of continuous sucrose density gradient centrifugation. Thyrotropin releasing hormone and luteinizing hormone releasing hormone in the gradient fractions were quantified by radioimmunoassays. TRH was associated with two populations of particles separable by means of nonequilibrium density centrifugation (100,000 g for 30min). However, after'equilibrium'centrifugation (100,000 × g for 180 min), a single peak of TRH was observed at 1.07 M-sucrose. Hypo-osmotic shock as well as treatment with 0.1% Triton X-100 or 0.1% deoxycholate (DOC) released TRH from both sets of particles. LRH, as TRH, was associated with two populations of particles which were separable by means of nonequilibrium density gradient centrifugation. After'equilibrium'centrifugation, both sets of LRH-containing particles banded at 1.27M-sucrose as a single symmetrical peak. Although 0.1% Triton X-100 released LRH from both populations of particles, hypo-osmotic shock or 0.1% DOC released LRH only from the large LRH-containing particles. The small LRH-containing particles were resistant to hypo-osmotic shock and to 0.1% DOC. Based on these criteria, it is concluded that in hypothalamic homogenates the TRH-containing particles and the large LRH-containing particles are synaptosomes. The small LRH-containing particles may be of different cellular and/or subcellular origin.  相似文献   
8.
Metformin is a commonly-used treatment for type 2 diabetes, whose mechanism of action has been linked, in part, to activation of AMP-activated protein kinase (AMPK). However, little is known regarding its effect on circadian rhythms. Our aim was to evaluate the effect of metformin administration on metabolism, locomotor activity and circadian rhythms. We tested the effect of metformin treatment in the liver and muscle of young lean, healthy mice, as obesity and diabetes disrupt circadian rhythms. Metformin led to increased leptin and decreased glucagon levels. The effect of metformin on liver and muscle metabolism was similar leading to AMPK activation either by liver kinase B1 (LKB1) and/or other kinases in the muscle. AMPK activation resulted in the inhibition of acetyl CoA carboxylase (ACC), the rate limiting enzyme in fatty acid synthesis. Metformin also led to the activation of liver casein kinase I α (CKIα) and muscle CKIε, known modulators of the positive loop of the circadian clock. This effect was mainly of phase advances in the liver and phase delays in the muscle in clock and metabolic genes and/or protein expression. In conclusion, our results demonstrate the differential effects of metformin in the liver and muscle and the critical role the circadian clock has in orchestrating metabolic processes.  相似文献   
9.
The plant hormone auxin plays a critical role in root growth and development; however, the contributions or specific roles of cell-type auxin signals in root growth and development are not well understood. Here, we mapped tissue and cell types that are important for auxin-mediated root growth and development by manipulating the local response and synthesis of auxin. Repressing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele strongly inhibited root growth, with the largest effect observed in the endodermis. Enhancing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele also caused reduced root growth, albeit to a lesser extent. Moreover, we established that root growth was inhibited by enhancement of auxin synthesis in specific cell types of the epidermis, cortex and endodermis, whereas increased auxin synthesis in the pericycle and stele had only minor effects on root growth. Our study thus establishes an association between cellular identity and cell type-specific auxin signaling that guides root growth and development.  相似文献   
10.
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.The repertoires and levels of peptides, presented by the major histocompatibility complex (MHC)1 class I molecules at the cells'' surface, are modulated by multiple factors. These include the rates of synthesis and degradation of their source proteins, the transport efficacy of the peptides through the transporter associated with antigen processing (TAP) into the endoplasmic reticulum (ER), their subsequent processing and loading onto the MHC molecules within the ER, and the rates of transport of the MHC molecules with their peptide cargo to the cell surface. The off-rates of the presented peptides, the residence time of the MHC complexes at the cell surface, and their retrograde transport back into the cytoplasm, influence, as well, the presented peptidomes (reviewed in (1)). Even though significant portions of the MHC class I peptidomes are thought to be derived from newly synthesized proteins, including misfolded proteins, defective ribosome products (DRiPs), and short lived proteins (SLiPs), most of the MHC peptidome is assumed to originate from long-lived proteins, which completed their functional cellular roles or became defective (retirees), (reviewed in (2)).The main protease, supplying the MHC peptidome production pipeline, is thought to be the proteasome (3). It is also responsible for generation of the final carboxyl termini of the MHC peptides (4), (reviewed in (5)). The final trimming of the n-termini of the peptides, within the endoplasmic reticulum (ER), is thought to be performed by amino peptidases, such as ERAP1/ERAAP, which fit the peptides into their binding groove on the MHC molecules (6) (reviewed in (7)). Nonproteasomal proteolytic pathways were also suggested as possible contributors to the MHC peptidome, including proteolysis by the ER resident Signal peptide peptidase (8, 9), the cytoplasmic proteases Insulin degrading enzyme (10), Tripeptidyl peptidase (1113), and a number of proteases within the endolysosome pathway (reviewed recently in (1417)). In contrast to the mostly cytoplasmic and ER production of the MHC class I peptidome, the class II peptidome is produced in a special compartment, associated with the endolysosome pathway (1820). This pathway is also thought to participate in the cross presentation of class I peptides, derived from proteins up-taken by professional antigen presenting cells (21), (reviewed in (1517, 22)).The centrality of the proteasomes in the generation of the MHC peptidome was deduced mostly from the observed change in presentation levels of small numbers of selected peptides, following proteasome inhibition (3, 23). Even the location of some of the genes encoding the catalytic subunits of the immunoproteasome (LMP2 and LMP7) (24) within the MHC class II genomic locus, was suggested to support the involvement of the proteasome in the generation of the MHC class I peptidome (25). Similar conclusions were deduced from alterations in peptide presentation, following expression of the catalytic subunits of the immunoproteasome (26), (reviewed in (5)). Yet, although most of the reports indicated reductions in presentation of selected peptides by proteasome inhibition (3, 2729), others have observed only limited, and sometimes even opposite effects (23, 3032).The matter is further complicated by the indirect effects of proteasome inhibition used for such studies on the arrest of protein synthesis by the cells (3335), on the transport rates of the MHC molecules to the cell surface, and on their retrograde transport back to the vesicular system (36) (reviewed in (37)). Proteasome inhibition likely causes shortage of free ubiquitin, reduced supply of free amino acids, and induces an ER unfolded protein response (UPR), which signals the cells to block most (but not all) cellular protein synthesis (reviewed in (38)). Because a significant portion of the MHC peptidome originates from degradation of DRiPs and SLiPs (reviewed in (2)), arrest of new protein synthesis should influence the presentation of their derived MHC peptides. Taken together, these arguments may suggest that merely following the changes in the presentation levels of the MHC molecules, or even of specific MHC peptides, after proteasome inhibition, does not provide the full picture for deducing the relative contribution of the proteasomal pathway to the production of the MHC peptidome (reviewed in (7)).MHC peptidome analysis can be performed relatively easily by modern capillary chromatography combined with mass spectrometry (reviewed in (39)). The peptides are recovered from immunoaffinity purified MHC molecules after detergent solubilization of the cells (40, 41), from soluble MHC molecules secreted to the cells'' growth medium (42, 43) or from patients'' plasma (44). The purified peptides pools are resolved by capillary chromatography and the individual peptides are identified and quantified by tandem mass spectrometry (40), (reviewed in (4547)). In cultured cells, quantitative analysis can also be followed by metabolic incorporation of stable isotope labeled amino acids (SILAC) (48). Furthermore, the rates of de novo synthesis of both MHC peptides and their proteins of origin can be followed using the dynamic-SILAC proteomics approach (49) with its further adaptation to HLA peptidomics (5052).This study attempts to define the relative contribution of the proteasomes to the production of HLA class I peptidome by simultaneously following the effects of proteasome inhibitors, epoxomicin and bortezomib (Velcade), on the rates of de novo synthesis of both the HLA class I peptidome and the cellular proteome of the same MCF-7 human breast cancer cultured cells. The proteasome inhibitors did not reduce the levels of HLA presentations, yet affected the rates of production of both the HLA peptidome and cellular proteome, mostly decreasing, but also increasing some of the synthesis rates of the HLA peptides and cellular proteins. Thus, we suggest that the degree of contribution of the proteasomal pathway to the production of the HLA-I peptidome should be re-evaluated in accordance with their effects on the entire HLA class-I peptidome, while taking into consideration the inhibitors'' effects on the synthesis (and degradation) rates of the source proteins of each of the studied HLA peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号