首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   1篇
医药卫生   90篇
  2023年   1篇
  2022年   5篇
  2021年   14篇
  2020年   4篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2005年   4篇
  2003年   2篇
  2002年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1976年   1篇
  1975年   5篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   7篇
  1970年   3篇
  1969年   2篇
  1968年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
In unanesthetized spinal cats, injected with l-DOPA, intra-axonal recording was used to investigate the primary afferent depolarization (PAD) evoked in different species of afferents by volleys in the flexor reflex afferents (FRA). It was confirmed that a late PAD is evoked in la afferents and usually not in Ib or cutaneous afferents. Some late PAD was observed in a few group II muscle afferents. Intracellular recording from motoneurones revealed a considerable depression of the Ia EPSP during the late PAD evoked from the FRA after DOPA, but it was diffkult to attribute this entirely to the PAD in Ia afferents since there was also a late postsynaptic conductance increase in the motoneurones. A further analysis was made on acute spinal cats not injected with DOPA, in which a late P.4D sometimes is evoked by FR24 volleys, without the late postsynaptic soma effects in motoneurones. The marked depression of the Ia EPSP evoked from the FRA under these conditions has a longer duration than the PAD in la afferent terminals. It is postulated that two mechanisms contribute to the Ia EPSP depression, presynaptic inhibition and “remote inhibition”; the latter action persisting after the repolarization of Ia afferents. The results are discussed in relation to reflex regulation of stepping.  相似文献   
2.
3.
Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes’ epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet.Soluble epoxide hydrolase (sEH) has a conserved cysteine (Cys521) proximal to its catalytic center. This cysteine can undergo Michael addition with electrophilic lipids, which inhibits hydrolysis of the enzyme’s epoxyeicosatrienoic acid (EET) substrates (1). This in turn elevates EET levels, which mediate blood vessel dilation and lowers blood pressure (BP), especially in the setting of hypertension (2, 3). Diverse sEH inhibitors limit injury in a variety of diseases (4), providing broad cardiovascular protection (5) against hypertension (6, 7), ischemia and reperfusion injury (8, 9), hypertrophy, and heart failure (10), as well as inflammation (11, 12). Consistent with the therapeutic potential of hydrolase inhibitors, sEH null mice are protected from pathological interventions (13). Conversely, genetic alterations that promote enhanced hydrolase activity are a risk factor for human heart failure (14).The endogenous lipid electrophile 10-nitrooctadec-9-enoic acid (nitro-oleic acid, NO2-OA) inhibits sEH in vitro (1). NO2-OA and other fatty acid nitroalkenes appear to signal via pleiotropic mechanisms including targeting and activating peroxisome proliferator-activated receptor gamma (PPARγ), the Kelch-like erythroid cell-derived protein with CNC homology (EHC)-associated protein-1 (Keap1), and nuclear factor (erythroid-derived)-like-2 (Nrf2)-regulated antioxidant response genes and inhibiting proinflammatory gene expression regulated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (15, 16). Nitroalkenes are produced by radical addition of nitrogen dioxide (·NO2) to one or more of the olefinic carbons of an unsaturated fatty acid. Nitrogen dioxide is both a product of oxidative inflammatory reactions involving nitric oxide (NO) and nitrite and the acidification nitrite. When the electron-withdrawing nitro group is bonded to alkenyl groups, this confers an electrophilic reactivity to fatty acids (17, 18). Thus, fatty acid nitroalkenes can modify proteins covalently via reversible Michael addition reactions that overall serves to link cellular metabolic and redox homeostasis with the posttranslational regulation of target protein function.Nitro fatty acids, which have been detected endogenously in plasma and urine of humans, animal models, and plants (1921), mediate salutary cardiovascular signaling actions (22). For example they relax blood vessels, attenuate platelet activation, and reduce inflammation via cyclic guanosine monophosphate (cGMP)-independent mechanisms (23, 24). Of relevance, the Mediterranean diet is characterized by high consumption of unsaturated fatty acids, especially from olive oil and fish rich in oleic and linoleic acid, together with vegetables rich in nitrite and nitrate (25). The acidic and low-oxygen conditions in the stomach provide an environment for efficient nitration of such unsaturated fatty acids by nitrite (26).NO2-OA normalizes blood pressure in an angiotensin (Ang) II-induced murine model of hypertension via undefined mechanisms (27). This was notable as pharmacological inhibitors of sEH also lower BP in murine hypertension, including salt- or Ang II-induced models (6, 7). As NO2-OA inhibits sEH, we hypothesized that this mechanism may account for BP lowering in the setting of hypertension. Furthermore, as the Mediterranean diet both contains nitro fatty acids and can elevate their endogenous generation, this mechanism may contribute to dietary-induced BP decreases that in turn will reduce the risk of adverse cardiovascular event (28).Given the complexity of causally establishing whether nitro fatty acids lower BP by inhibiting sEH, especially in the setting of dietary-induced endogenous fatty acid nitration, we generated a Cys521Ser sEH knockin (KI) mouse. This “redox-inactive” sEH thiol mutant, rendered insensitive to adductive inhibition by lipid electrophiles in vitro, provided a novel model system for testing the impact of lipid nitroalkenes on sEH hydrolysis of vasoactive EET species and downstream physiological responses (1). The data reveal that nitro fatty acids, applied exogenously as a pharmacological agent or generated endogenously as part of the Mediterranean diet, inhibit sEH to elevate plasma EETs, which in turn lower BP.  相似文献   
4.
Autophagy plays an important role in neoplastic transformation of cells and in resistance of cancer cells to radio- and chemotherapy. p62 (SQSTM1) is a key component of autophagic machinery which is also involved in signal transduction. Although recent empirical observations demonstrated that p62 is overexpressed in variety of human tumors, a mechanism of p62 overexpression is not known. Here we report that the transformation of normal human mammary epithelial cells with diverse oncogenes (RAS, PIK3CA and Her2) causes marked accumulation of p62. Based on this result, we hypothesized that p62 may be a feasible candidate to be an anti-cancer DNA vaccine. Here we performed a preclinical study of a novel DNA vaccine encoding p62. Intramuscularly administered p62-encoding plasmid induced anti-p62 antibodies and exhibited strong antitumor activity in four models of allogeneic mouse tumors – B16 melanoma, Lewis lung carcinoma (LLC), S37 sarcoma, and Ca755 breast carcinoma. In mice challenged with Ca755 cells, p62 treatment had dual effect: inhibited tumor growth in some mice and prolonged life in those mice which developed tumor size similar to control. P62-encoding plasmid has demonstrated its potency both as a preventive and therapeutic vaccine. Importantly, p62 vaccination drastically suppressed metastasis formation: in B16 melanoma where tumor cells where injected intravenously, and in LLC and S37 sarcoma with spontaneous metastasis. Overall, we conclude that a p62-encoding vector(s) constitute(s) a novel, effective broad-spectrum antitumor and anti-metastatic vaccine feasible for further development and clinical trials.  相似文献   
5.
Clinical efficiency and safety of nimesil were studied in the multicenter open clinical trial of 52 patients with verified rheumatoid arthritis. Nimesil was given for 12 weeks in a daily dose 200-400 mg in addition to basic therapy. Clinical and laboratory parameters were assessed after 4 and 8 weeks of the treatment and after its end. The treatment produced a significant positive response of the articular syndrome. Marked improvement was registered in 11 (23.4%) patients, improvement--in 33 (79.2%) patients. Side effects were reversible and occurred in 8 (15.3%) patients. In 5 patients the drug was withdrawn. The conclusion is made on high efficiency and good tolerance of nimesil in rheumatoid arthritis patients.  相似文献   
6.
Proton magnetic relaxation times (T1 and T2) and bound water content were measured in vitro in pituitary adenomas from 15 patients using 90 MHz radiofrequency excitation. These data were compared with those measured in normal pituitary glands obtained from four cats and seven fresh human cadavers. The T1 and T2 measured at 24 degrees C in the tumors (mean +/- SD: 1,170 +/- 80 and 123 +/- 35 ms, respectively) were significantly higher than those of cadaver pituitary (830 +/- 200 and 76 +/- 12 ms) and cat pituitary gland (790 +/- 120 and 69 +/- 10 ms). Although the absolute values were lower, similar differences were present in T1 measured at 4 degrees C. Two-dimensional T2 versus T1 plot was particularly helpful in distinguishing tumor from the normal gland. When tumors were grouped according to density on CT, histology or previous treatment (e.g., irradiation or bromocriptine), there were no significant differences in T1 values between the groups. Bound water content was not found to correlate with T1 or T2 values. We concluded that pituitary adenomas can be distinguished from normal pituitary glands by their different relaxation properties when measured at high frequency in vitro MR.  相似文献   
7.
8.
Sirtuin 2 (SIRT2) is a sirtuin family deacetylase that directs acetylome signaling, protects genome integrity, and is a murine tumor suppressor. We show that SIRT2 directs replication stress responses by regulating the activity of cyclin-dependent kinase 9 (CDK9), a protein required for recovery from replication arrest. SIRT2 deficiency results in replication stress sensitivity, impairment in recovery from replication arrest, spontaneous accumulation of replication protein A to foci and chromatin, and a G2/M checkpoint deficit. SIRT2 interacts with and deacetylates CDK9 at lysine 48 in response to replication stress in a manner that is partially dependent on ataxia telangiectasia and Rad3 related (ATR) but not cyclin T or K, thereby stimulating CDK9 kinase activity and promoting recovery from replication arrest. Moreover, wild-type, but not acetylated CDK9, alleviates the replication stress response impairment of SIRT2 deficiency. Collectively, our results define a function for SIRT2 in regulating checkpoint pathways that respond to replication stress through deacetylation of CDK9, providing insight into how SIRT2 maintains genome integrity and a unique mechanism by which SIRT2 may function, at least in part, as a tumor suppressor protein.  相似文献   
9.
The currently available anti-obesity therapies encounter many associated risks and side effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances have been extensively studied as a promising support or even an alternative for existing anti-obesity therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb species and emerging possible role of the rhubarb-derived extracts or individual compounds in the prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is highlighted, including the context of cardiovascular disease prevention. The available reports present multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre or its use as purgative medicines, through various actions of rhubarb-derived extracts and their individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to overall in vivo and clinical anti-obesity effects.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号