首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   3篇
环境安全   11篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2003年   2篇
  2000年   2篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
1前言我国是世界人口数量最多的国家,但也是安全生产事故死亡人数最多的国家,每年的交通事故死亡人数是第一位,其次是煤矿。如何把交通事故和死亡人数降下来,交通部和各省、市交通管理部门,纷纷出台控制事故的政策规定。云南省交通厅2003年585号文件要求,交通厅所属的企业要积极推行三大体系认证工作,特别是职业安全健康管理体系。公路货运和客运工作中的不确定危险因素相当多,首先要树立安全的思想理念,不能存在任何侥幸的心理,使全体员工树立“以人为本”的安全生产观念,将“安全第一、预防为主”落实到每一名员工;运用职业安全健康管理体…  相似文献   
2.
土壤中微生物在多环芳烃(PAHs)的降解过程中起着重要作用。以华北某焦化厂土壤为研究对象,在5个采样点(每个点分6层)采集30个土壤样品,分析土壤环境因子(理化性质和PAHs浓度)、微生物丰度及群落结构,探讨土壤中微生物组成与环境因子间的关系。结果表明:土壤中细菌丰度为5.33~8.89,与土壤深度呈显著负相关(P<0.01),与土壤PAHs、有机碳、全氮浓度呈正相关(P<0.05);土壤中优势细菌类群(门)为变形菌门(Proteobacteria),其相对丰度占比最高达90%,其次是绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和酸杆菌门(Acidobacteria),其占门水平分类细菌数量的64%~97%;细菌类群与环境因子冗余分析表明,焦化厂土壤中细菌群落结构特征是PAHs污染和环境因子共同作用的结果,其中土壤pH与速效钾、PAHs、全氮浓度对土壤细菌群落组成影响明显,PAHs潜在降解菌Proteobacteria丰度与PAHs、全氮、有效磷、速效钾、有机碳浓度呈正相关。  相似文献   
3.
该研究以PAHs污染土壤为研究对象,研究了不同温度条件下土壤中PAHs的缺氧生物降解规律。结果表明,土壤中细菌总数随着温度的升高而增加。经过180 d缺氧培养后,当温度从20℃升至30、40、50和60℃时,土壤中的细菌总量较20℃处理组土壤中的细菌总量分别增加了0.07、0.37、0.55和0.60个数量级。原土中微生物优势种群为变形杆菌门和放线菌门。而随着温度的升高,厚壁菌门逐渐转变为优势种群。经过180 d缺氧培养,当温度从20℃上升至60℃时,厚壁菌门的相对丰度由11.27%上升到90.83%。不同温度条件下PAHs降解效率基本遵循60℃>50℃>40℃>30℃>20℃的顺序,不同环数PAHs的降解效率基本遵循三环>四环>五六环的顺序。当培养温度为60℃时,PAHs的缺氧降解效果最好,三环、四环、五六环和TPAHs去除率分别达到了70.73%、55.99%、16.96%、42.26%,与20℃相比分别提高了30.69%、28.38%、9.56%、21.01%。  相似文献   
4.
5.
最近几年,随着国产汽车升级换代,大量引进技术生产新车和进口汽车的增加,特别是桥车保有量迅速增加,在这种情况下,研究道路畅通,加强交通安全,人、车、路和交通环境以及它们之间相互关系,以寻求道路的最大通行能力,交通事故最少,运输效率最高,运输费用最省,交通公害最低,从而达到安全、经济、迅速、便利的目的。为了加强交通安全首先要把人为的交通事故隐患,酒后驾驶车辆彻底消灭。为什么要严禁酒后开车?汽车是一种速度较快,重力较大的交通工具,汽车驾驶员在道路上行驶,会遇到非常复杂的交通情况。驾驶员必须有清醒的头脑…  相似文献   
6.
三氯乙烯(TCT)是我国地下水中一类检出率极高的挥发性氯代烃有机物,为丰富国内氯代烃污染地下水生物修复的理论支持,从北京市某氯代烃实际污染场地采集含水层沉积物及地下水,利用微宇宙试验体系,在厌氧条件下分别研究了添加不同浓度的醋酸钠、乳酸钠、乳酸对地下水中TCE去除效果的影响,结合各厌氧体系内中间产物的分析和微生物多样性的变化对反应机理进行阐述。结果表明:厌氧条件下,添加1.0 g/L醋酸钠的反应体系中TCE的去除率最高,可达94.5%,且添加醋酸钠的反应体系可长时间维持中性pH及较低的氧化还原电位。在对厌氧反应降解中间产物的分析中,反应第30天中间产物只检测到了顺式1,2-二氯乙烯,推测本试验厌氧条件下TCE生物降解主要机制为氢解反应;微宇宙体系内,各样品的优势菌门均含有Proteobacteria(变形菌门)、Firmicutes(厚壁菌门),且均为氯代烃的潜在高效降解菌;基因定量分析显示,各反应体系中细菌总量显著增长,且各样品均检测到较高水平的功能基因tceA(水样中拷贝数可达106~107 L-1),推测TCE的降解可能是在功能基因tceA的作用下而发生氢解反应。  相似文献   
7.
微生物降解是处理土壤中石油烃 (PHC)污染的有效技术,目前对PHC微生物降解的研究多集中在好氧条件下,对PHC缺氧微生物降解的研究较少,PHC缺氧降解规律尚不清楚。以PHC污染的深层土壤为对象,探究不同质量分数 (500、1 500、5 000 mg·kg−1)的硫酸盐、硝酸盐或混合电子受体对土壤中土著微生物丰度、群落结构以及PHC缺氧降解的影响规律。结果表明,150 d缺氧培养后,添加相同种类电子受体的土壤处理中细菌丰度、潜在PHC降解菌 (变形菌门和厚壁菌门)丰度随电子受体的质量分数增加而增加;添加相同质量分数的不同种类电子受体土壤处理中细菌丰度、潜在PHC降解菌丰度从高到低分别为硝酸盐、混合电子受体、硫酸盐。添加相同种类电子受体的土壤处理中ΣPHC (C10~C30)和C1 (C10~C16)、C2 (C17~C23)、C3 (C24~C30)组分的降解率随着加入电子受体质量分数增加而增加;相同质量分数的不同种类电子受体土壤处理中ΣPHC和C1、C2、C3组分的降解率从高到低分别为硝酸盐、混合电子受体、硫酸盐。土壤中PHC缺氧降解率与细菌丰度、潜在PHC降解菌丰度均存在正相关关系。研究结果可为石油烃污染土壤的修复技术研发提供技术支持。  相似文献   
8.
1,2-二氯乙烷(1,2-DCA)是一类地下水中常见的难降解饱和氯代烃,为探究厌氧条件下零价铁(ZVI)协同生物作用对其降解规律,采集北京市某氯代烃污染场地地下水及含水层土壤,利用微宇宙实验体系,通过添加由微米级零价铁(mZVI)、生物碳源及营养组成的复合药剂,考察不同条件下1,2-DCA的去除效果,并对地下水理化参数的变化进行长期监测.结果表明:复合药剂添加量为3%时,恒温、避光、匀速振荡的反应条件下,15 d内地下水中的1,2-DCA即可降至低于检出限.中性pH及SO_4~(2-)的存在更有利于1,2-DCA的脱氯降解. 30 d后仅检测到体系中明显的乙烯产生,推测双脱氯消除为1,2-DCA在该体系内的主要降解途径.此外,复合药剂加入后,地下水可长时间维持较低的氧化还原电位(-100~-300 m V)、溶解氧(0. 5 mg·L~(-1))以及适宜的pH值(6. 5~7. 5),利于厌氧微生物活性的维持及脱氯反应的进行.  相似文献   
9.
化学氧化和微生物联合修复是去除土壤中石油烃 (PHC) 的有效技术,但氧化后土壤中残留PHC的生物有效性较低,难以进一步生物降解。向过硫酸盐 (PS) 氧化后的土壤中加入不同质量浓度和质量比的表面活性剂十二烷基苯磺酸钠 (SDBS) 和聚氧乙烯山梨醇酐单油酸酯 (Tween 80) ,探究其对PS氧化后土壤中PHC解吸、土著微生物群落结构和丰度、PHC缺氧降解的影响。结果表明,缺氧条件下PS氧化和微生物联合降解去除了土壤中30.84%的ΣPHC (C10~C30) 。向PS氧化后土壤中加入SDBS和Tween 80能够有效促进PHC解吸,解吸效果随表面活性剂质量浓度和混合体系中Tween 80比例的增加而增加。加入3 000 mg·L−1表面活性剂继续缺氧培养120 d后,氧化后土壤中Firmicutes和Proteobacteria的总数量较对照组减少了2.13~2.58个数量级,抑制了土壤中PHC的缺氧降解。加入800 mg·L−1表面活性剂后,土壤中Firmicutes和Proteobacteria的总数量较对照组增加了0.17~0.81个数量级,促进了PHC的缺氧降解,在SDBS∶Tween 80=1∶3时ΣPHC残留率最低 (较对照组降低了15.80%) 。本研究结果可为深层石油污染土壤的微生物修复提供参考。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号