首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以水热法合成的碳微球为模板,制备LaCo_xFe_(1-x)O_3(x=0.1,0.2,0.3,0.6,0.9)催化剂。采用XRD、BET、H2-TPR和SEM等手段对其进行物理性能研究,并对其进行催化甲烷燃烧性能研究。结果表明,以碳微球为模板掺杂不同比例Co2+,经过400℃和700℃两次焙烧,可形成完整的钙钛矿晶型。随着Co~(2+)掺杂量增加,催化剂的比表面积逐渐增加;Co~(2+)掺杂量不同,所制备催化剂的结构和活性也不同,其中,LaCo_(0.2)Fe_(0.8)O_3催化甲烷燃烧活性最好,起燃温度T10%为448℃,完全转化温度T90%为640℃。  相似文献   

2.
以聚苯乙烯胶晶为模板剂,分别用溶胶-凝胶法、共沉淀法和水热合成法制备La_(0.7)Ce_(0.3)Ni_(0.7)Fe_(0.3)O_3钙钛矿复合氧化物,利用XRD, H_2-TPR, SEM, N_2-吸附脱附和FT-IR等对钙钛矿复合氧化物的结构和物化性能进行了表征。同时以乙醇水蒸气重整为探针,考察了催化剂的活性及抗积碳性能。结果表明:溶胶凝胶制备的La_(0.7)Ce_(0.3)Ni_(0.7)Fe_(0.3)O_3复合氧化物表面结构疏松,具有较大的比表面积和适宜的孔径分布,在还原过程中产生较多的金属活性中心,在400℃时乙醇转化率可达到100%,且具有较好的抗积碳性能。  相似文献   

3.
采用液相沉淀法制备了Co_3O_4催化剂,并对其进行还原-氧化预处理制得Co_3O_4-RO。通过XRD、N_2-physisorption、Raman、H_2-TPR、XPS和O_2-TPD等技术对催化剂进行表征,在连续流动微反应装置上考察了催化剂催化分解N_2O性能。结果表明,经过还原-氧化预处理,与Co_3O_4催化剂相比,Co_3O_4-RO结晶度变差,晶粒粒径减小,尤其是尖晶石结构重构过程削弱了Co-O键,增强了催化剂表面的氧物种脱附能力,降低了催化分解N_2O反应的活化能,因而显著提高了催化剂的催化活性。同时,Co_3O_4-RO对原料气中的O_22%(体积分数)和H_2O 2. 3%(体积分数)表现出较强的耐受性。  相似文献   

4.
以葡萄糖溶液为原料,通过水热法制备了分散性良好的碳微球;以碳微球为模板,应用化学沉淀法和热处理技术除去碳核获得空心铬锌铁氧体;用钛酸四丁酯作为钛源,在空心铁氧体表面包覆二氧化钛制备了锌铬铁氧体/二氧化钛二元复合物.采用现代分析技术表征了制备样品的微观结构、形貌和电磁性能,并对其吸附和降解染料废水的性能进行了研究.结果表明,Zn Cr_(0.25)Fe_(1.75)O_4对染料废水具有较好的去污效果,对甲基橙和罗丹明B的去污效率分别为87%和83%;TiO_2对铁氧体的包覆能提高复合物对染料废水的光催化降解性能,其中m_(T/ZCF)=0.3的ZnCr_(0.25)Fe_(1.75)O_4/TiO_2复合物的去污效果最佳,几乎与纯二氧化钛相仿.  相似文献   

5.
汽车尾气中CO,HC,NO_x,硫化物及其颗粒粉尘严重危害人们身体健康和大气环境,是大气环境的主要污染源之一.目前,尾气净化是其减排的最主要方式.汽车尾气催化剂的发展经历了几代的研究,一直以来广泛采用Pt,Pd和Rh等贵金属,但因其资源匮乏,价格昂贵,容易被S和P中毒,因此人们逐渐将目光投向非贵金属催化剂的研发.钙钛矿复合氧化物因具有独特的物理化学性质以及灵活的"化学剪裁"特性而在材料研究等领域颇受青睐,有望成为贵金属催化剂的替代品.一般而言,催化剂的比表面积越大,表面活性位点越多,其催化活性越高,且会明显降低起燃温度.目前,一些制备工艺,如水热法、共沉淀法、微乳液法和硬模板法,虽可在一定程度上提高催化剂的比表面积,但却存在费时、耗能及制备工艺复杂等缺点.因此,如何简单有效地制备出大比表面积的钙钛矿型催化剂依然是一个难题.本文以合成的分级多孔δ-MnO_2微球为模板,采用熔盐法制备出球状多孔La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6)钙钛矿氧化物,研究了球状多孔钙钛矿氧化物的形成过程和合适的制备温度,以及B位Fe_3+掺杂量为20%时A位Sr~(2+)掺杂量对钙钛矿催化剂结构和催化活性的影响.采用X射线粉末衍射、扫描电子显微镜、透射电子显微镜、N~2吸附-脱附、傅里叶红外光谱(FT-IR)和X射线能谱(XPS)等方法对催化剂进行了表征.在固定床石英管反应器上评价了催化剂催化CO氧化活性及稳定性,采用气相色谱联接氢火焰离子化检测器检测了产物和反应物的组成.结果表明,以分级多孔δ-MnO_2微球为模板,采用熔盐法在450oC反应4h制备出的球状多孔La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.6)钙钛矿氧化物具有良好的结晶性、较大的比表面积(55.73m~2/g)和孔体积(0.37cm~3/g).其球状多孔结构的形成可分为两个阶段:原位形成钙钛矿相和纳片表面析出钙钛矿晶粒及钙钛矿晶粒的再生长.另外,FT-IR光谱表明,Fe~(3+)和Sr~(2+)成功进入A,B位.同时,CO转化曲线表明,B位Fe~(3+)的掺杂量为20%时,A位Sr~(2+)的掺杂量高于30%时可以明显改善催化剂催化CO氧化活性:La_(1-x)Sr_xMn_(0.8)Fe_(0.2)O_3(0≤x≤0.3)的T_(50)和T_(90)分别在180和198℃左右;而La_(0.55)Sr_(0.45)Mn_(0.8)Fe_(0.2)O_3和La_(0.4)Sr_(0.6)Mn_(0.8)Fe_(0.2)O_3的T_(50)均低于125℃;La_(0.55)Sr_(0.45)Mn_(0.8)Fe_(0.2)O_3的T_(90)为181℃,而La_(0.4)Sr_(0.6)Mn_(0.8)Fe_(0.2)O_3却仍低于125℃.XPS结果则证明,较高的催化活性得益于La_(0.4)Sr_(0.6)Mn_(0.8)Fe_(0.2)O_3表面存在较多的Mn+、氧空位及吸附氧.最后,La_(0.55)Sr_(0.45)Mn_(0.8)Fe_(0.2)O_3和La_(0.4)Sr_(0.6)Mn_(0.8)Fe_(0.2)O_3的稳定性测试结果表明,采用熔盐法以δ-MnO_2为模板在450℃焙烧4h制备的多孔球状钙钛矿具有较好的催化稳定性.虽然催化剂制备工艺简单,周期短,但比表面积最大只有55.73m~2/g,为硬模板法的1/2,因此提高比表面积将是今后研究的方向.  相似文献   

6.
以十六烷基三甲基溴化胺(CTAB)为模板剂,通过调变CTAB浓度水热合成了氧化钴前驱体,焙烧制得棒状形貌的Co_3O_4,在其表面浸渍K_2CO_3溶液制得K改性的Co_3O_4催化剂,用于N_2O分解。用X射线衍射(XRD)、N_2物理吸附(BET)、扫描电镜(SEM)、X射线光电子能谱(XPS)、H_2程序升温还原(H_2-TPR)和O_2程序升温脱附(O_2-TPD)等技术对催化剂进行了表征,考察了CTAB/钴及尿素/钴物质的量比等制备参数对Co_3O_4催化分解N_2O活性的影响。结果表明,CTAB浓度为0.05 mol/L、CTAB/钴离子物质的量比为1、尿素/钴离子物质的量比为4时,所制备的Co_3O_4催化剂具有较高的N_2O分解活性,而K改性可以进一步提升其催化性能。K改性的Co_3O_4在有氧有水气氛中400℃下进行N_2O分解反应,50 h后N_2O转化率仍保持在91%以上。  相似文献   

7.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的VOCs治理技术,因此研发新型高效VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co_3O_4,MnO_2,Fe_2O_3,Cr_2O_3和LaFeO_3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co_3O_4,Au/MnO_2和Pd/Co_3O_4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe_2O_3,LaMnO_3,La_(0.6)Sr_(0.4)MnO_3和La_2CuO_4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co_3O_4,Au/LaCoO_3,Au/La_(0.6)Sr_(0.4)MnO_3和AuPd/Co_3O_4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高VOCs的消除效率.  相似文献   

8.
利用纳米γ-Al_2O_3(10 nm)和普通γ-Al_2O_3(200-300 nm),采用浸渍法制备了1%(w)Pd/γ-Al_2O_3催化剂,考察了其催化氧化邻-二甲苯的性能以及催化剂的活性在氢气还原前后的区别。实验结果发现1%(w)Pd/γ-Al_2O_3(nano)在H_2还原后催化氧化邻-二甲苯的活性最高,T_(90)为150℃。利用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、X射线光电子能谱(XPS)等表征手段,研究了1%(w)Pd/γ-Al_2O_3催化剂物性结构与催化性能之间的构效关系。结果表明,还原态Pd是H_2还原后催化剂催化氧化邻-二甲苯的活性物种;Pd的颗粒大小与催化剂活性有显著的关系,小粒径有利于催化剂活性提高;纳米γ-Al_2O_3载体与Pd之间的相互作用强,有利于Pd的粒径控制和分散,从而提高1%(w)Pd/γ-Al_2O_3(nano)催化剂的活性。  相似文献   

9.
在180℃下,CuCl_2和NH_3·H_2O水热反应制备了纳米片构建的CuO空心微球。在上述体系中,加入乙二醇,制备了纳米棒构建的CuO空心微球。其形成机理是以NH_3气泡为模板的原位吸附生长过程。以酸性大红为例,比较了两者的声催化性能,结果表明,纳米棒构建的CuO空心微球声催化性能强于纳米片构建的CuO空心微球。  相似文献   

10.
采用水热-浸渍法制备了系列Dy和Y掺杂改性的CuO/CeZrO_2催化剂,使用X射线粉末衍射(XRD)、N_2吸附脱附和程序升温还原(H_2-TPR)等手段对催化剂进行了表征,研究了Dy和Y掺杂改性对CuO/CeZrO_2在富氢气氛中CO优先氧化催化性能的影响。结果表明,所制备的CuO-CeZrO_2催化剂均为萤石结构;添加适当比例的Dy_2O_3和Y_2O_3能增强活性组分与载体间的相互作用,有利于CuO活性组分的分散和低温还原能力的提高,从而改善了CuO/CeZrO_2用于CO优先氧化的催化活性。同时,掺杂Dy和Y能够提高CuO/CeZrO_2催化剂的抗CO_2抑制作用的能力,改善其催化稳定性。  相似文献   

11.
采用无皂乳液聚合法制备聚苯乙烯(PS)微球,通过自组装得到排列均匀有序的聚苯乙烯(PS)胶晶模板,然后经过浸渍和煅烧得到三维有序大孔(3DOM)钙钛矿型氧化物LaFe_(0.7)Co_(0.3)O_3。通过扫描电镜、透射电镜和X射线衍射等手段对制备的3DOM钙钛矿型氧化物LaFe_(0.7)Co_(0.3)O_3的物理化学性能进行表征。在固定床反应器上考察3DOM LaFe_(0.7)Co_(0.3)O_3的甲烷化学链水蒸气重整性能。结果表明,聚苯乙烯(PS)微球粒径受苯乙烯单体使用量的影响,随着苯乙烯单体使用量的增加聚苯乙烯(PS)微球粒径呈增大的趋势;煅烧温度对三维有序大孔结构有显著影响,浸渍后模板在500℃煅烧下即能形成三维有序大孔结构比表面积达到19.820 m2/g,随着煅烧温度的升高三维有序大孔结构遭到部分破坏,在900℃煅烧下三维有序大孔结构遭到完全破坏。在氧载体与甲烷的反应前期,气体产物中CO2含量较高,是表面吸附氧将甲烷完全氧化所致,在表面吸附氧消耗完后体相晶格氧将甲烷部分氧化生成H2与CO。在水蒸气氧化阶段,水蒸气与还原态的氧载体发生反应生成氢气,产氢率为4.0-5.0 mmol/g。同时水蒸气氧化阶段气相产物中CO和CO2含量很低,说明3DOM LaFe_(0.7)Co_(0.3)O_3具有优秀的抗积炭性能。  相似文献   

12.
采用了不同沉淀剂(K_2CO_3、Na_2CO_3、NaOH、NaHCO_3)制备了一系列Co_3O_4氧化物催化剂.通过XRD、XPS、BET、H2-TPR、O_2-TPD表征手段,探究了催化剂物相结构和氧化还原性能对N_2O催化分解性能的影响.研究表明,以K_2CO_3为沉淀剂制备的Co_3O_4催化剂具有优越的氧化还原性能.此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面Co物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附.以K_2CO_3为沉淀剂制备的Co_3O_4催化剂表现出最佳的N_2O催化分解活性,在450℃达到90%以上的转化率.  相似文献   

13.
La-Mn-Ni-O催化剂组成、结构、还原性能及氧化活性   总被引:1,自引:0,他引:1  
用硝酸盐分解法合成了LaMn_(1-x)Ni_xO_3(0≤2≤1.0), 研究了组成、晶体结构及其与还原性能、CO和CH_3OH催化氧化活性的关系。XRD证实在0.0≤x≤1.0范围内, 本体系都生成单一钙钛矿结构: 0.0≤x≤0.4, 0.8相似文献   

14.
 采用水油两相双引发剂的无皂乳液聚合法制备了羧基改性的聚甲基丙烯酸甲酯 (PMMA) 聚合物微球, 并以此为模板, 采用胶体晶体模板法制备了三维有序大孔 (3DOM) 钙钛矿 LaFeO3 催化剂. 同时采用柠檬酸络合燃烧法制备了纳米钙钛矿 LaFeO3 催化剂. 通过傅里叶红外光谱、扫描电镜、X 射线衍射和激光粒度仪等方法对样品进行了表征. 采用程序升温氧化反应评价了催化剂对模拟柴油机炭黑颗粒催化燃烧的活性. 结果表明, 制备的羧基改性 PMMA 聚合物微球固含量约为 10%, 表面羧基含量约为 3 mmol/g. 微球粒径分布均匀, 且可通过调节反应条件得到不同的粒径, 可控范围在 300~700 nm. 所制得的 3DOM 钙钛矿 LaFeO3 催化剂以六方有序的方式排列, 其孔径及孔径收缩率分别为 300 nm 和 32%, 大孔孔壁平均厚度约 50 nm. 该催化剂对炭黑颗粒催化燃烧的 T10, T50, T90 和 SmCO2 分别为 340, 412, 458 oC 和 99.8%, 性能优于纳米 LaFeO3 催化剂.  相似文献   

15.
采用溶剂热法制备了La_(1-x)Rb_xM n O_3(x=0、0.1、0.2、0.3)钙钛矿型复合金属氧化物催化剂,通过XRD、FT-IR、SEM、XPS和H_2-TPR等手段对催化剂进行表征,在微型固定床反应器上评价了其同时消除NO和碳烟的催化性能。结果表明,La_(1-x)Rb_xM n O_3催化剂具有单一的钙钛矿结构,样品中Mn物种以Mn~(3+)和Mn~(4+)的形式存在。与LaMn O_3催化剂相比,Rb~+部分取代La~(3+),催化剂体系中形成较多的高价Mn~(4+)和氧空位,其氧化还原性能提高,催化性能得到改善。随着Rb~+取代量的增加,NO转化率升高,碳烟燃烧温度降低。当x=0.3时,La_(0.7)Rb_(0.3)M n O_3催化剂上CO_2浓度峰值温度t_(max)为430℃,CO_2的选择性为99.0%;反应温度为429℃,NO转化率达到最大,为59.7%。  相似文献   

16.
Y_2O_2S:Eu~(3+)空心微球的制备与性能   总被引:2,自引:0,他引:2  
以单分散的碳球为硬模板,采用均匀共沉淀法合成了Y_2O_2S:Eu~(3+)心微球.通过XRD、SEM、TEM、荧光光谱对其进行表征.X射线衍射测试表明所制备的Y_2O_2S:Eu~(3+)空心微球为单相,六方晶.扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试表明所制备的Y_2O_2S:Eu~(3+)空心微球粒径小,分布均匀.激发和发射光谱测试表明Eu~(3+)离子能有效地掺入硫氧化钇基质中,并具有良好的发光性能.  相似文献   

17.
制备具有氧还原(ORR)与氧释放(OER)双功能催化活性的特殊孔道结构电催化剂是锂氧电池研究的挑战之一。本文以氧化石墨烯、硝酸铁、硝酸镧、柠檬酸为原料,结合溶胶凝胶和水热合成方法,制备出还原氧化石墨烯(RGO)与铁酸镧(LaFeO_3)复合的双功能催化剂(RGO-LaFeO_3)。X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱和Raman光谱分析结果确认该复合催化剂由纯相钙钛矿结构LaFeO_3和还原氧化石墨烯组成,扫描电子显微镜(SEM)观察到LaFeO_3纳米颗粒均匀地负载在RGO片层表面。锂氧电池测试结果指出,相对于LaFeO_3纳米粒子(NP-LaFeO_3),RGO-LaFeO_3催化剂具有更好的ORR和OER催化活性,归因于RGO特殊的三维导电多孔结构与LaFeO_3纳米粒子的协同催化作用。以RGO-LaFeO_3作为阴极催化剂的锂氧电池在限1000 m Ah?g~(-1)比容量、100 m A?g~(-1)电流密度条件下,可实现36周稳定的充放电循环,展示出良好的应用前景。  相似文献   

18.
制备了一系列负载型纳米Au/Cr_2O_3催化剂,采用ICP、FTIR、XRD和N2吸附脱附对所制备的催化剂进行了表征.以3%的H_2O_2为氧化剂,考察其对甘油选择性氧化反应的催化性能.结果表明,该类催化剂在甘油选择性氧化反应中表现出了较好的催化性能,其中Au/Cr_2O_3(0.95%)的催化性能最好,甘油转化率可达81.5%,甘油酸选择性为67.0%,且该非均相催化剂重复使用10次后仍保持较高的催化活性.  相似文献   

19.
催化炭烟燃烧的本质是典型的固体(炭烟颗粒)-固体(催化剂)-气体(O_2和NO)三相深度氧化反应.因此炭烟燃烧性能不仅与催化剂的本征活性有关,同时也与催化剂和炭烟颗粒之间的接触效率有关.钙钛矿型(ABO_3)氧化物具有高热稳定性和高催化活性,在钙钛矿型氧化物中A位通常为稀土元素,B位通常为过渡金属元素,钙钛矿的A,B位离子都可以被半径相近的其他元素部分取代,而且物相结构不发生变化.我们组前期研究发现,用碱金属部分取代钙钛矿型氧化物中的A位,可以有效提高其催化活性.同时发现三维有序大孔(3DOM)结构可以有效的增加催化剂与碳烟颗粒的接触效率.基于此,本文利用胶体晶体模板法成功制备了3DOM La_(1-x)K_xNiO_3钙钛矿型催化剂,并采用SEM,TEM,HRTEM,Elements mapping,XRD,Raman,XPS和H_2-TPR等手段对其物理化学性能进行了表征,进一步探讨K取代对3DOM La_(1–x)K_xNiO_3催化剂炭烟催化燃烧性能的影响.SEM和TEM照片显示,制备的3DOM La_(1–x)K_xNiO_3催化剂孔道三维有序贯通,孔径均一,孔壁厚度均匀,每个大孔下面展示清晰可见的小孔窗,大孔孔径大约为260 nm,这有利于炭烟颗粒在气流的协助下进入催化剂的孔道之内,从而提高炭烟与催化剂之间的接触效率.3DOM结构催化剂具有大的比表面积(24?27 m~2g~(–1)),且K的取代对其比表面积无太大的影响.XRD和Raman谱证实了催化剂的钙钛矿结构,且K能够取代La并进入钙钛矿氧化物的晶格中.XPS和H_2-TPR表征发现,K取代La之后,B位的Ni元素的价态有所提升,表面活性氧物种密度增加,其中3DOM La_(0.95)K_(0.05)NiO_3催化剂具有最高的Ni~(4+)的含量和活性氧含量.3DOM La_(1–x)K_xNiO_3催化剂展示了高的炭烟燃烧催化性能,且K的取代能够明显促进其催化炭烟燃烧活性.在松散接触条件下,催化剂炭烟催化燃烧活性的顺序为:3DOM La_(0.95)K_(0.05)NiO_33DOM La_(0.90)K_(0.10)NiO_33DOM La_(0.80)K_(0.20)NiO_33DOM La_(0.99)K_(0.01)NiO_33DOM LaNiO_3particle–type LaNiO_3.其中,3DOM La_(0.95)K_(0.05)NiO_3催化剂展示了最高的炭烟燃烧催化性能,其T_(50)和S_(CO2)值分别为338°C和98.2%,这与Pt基催化剂活性相当.另外,对炭烟催化燃烧性能的影响因素进行了探讨:一方面,三维有序大孔结构有效提高催化剂活性;另一方面,K元素的取代提高了Ni的价态,从而提升了表面活性氧物种数量,这对炭烟催化燃烧起着至关重要的作用.  相似文献   

20.
采用聚苯乙烯(PS)微球做模板,以甲醇真空法制备的三维有序大孔材料(3DOM)TiO_2为载体,通过浸渍法将其与多酸H_6P_2W_(18)O_(62)复合制备成3DOM H_6P_2W_(18)O_(62)/TiO_2。通过傅立叶-红外光谱(FT-IR)、X射线粉末衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和N2吸附-脱附等表征手段对所合成材料的光吸收性质、结构和晶相进行了表征,结果表明,3DOM H_6P_2W_(18)O_(62)/TiO_2复合材料中多酸仍然保留其Dawson结构,且晶型结构以TiO_2锐钛矿结构为主。为考察所合成纳米复合材料3DOM H_6P_2W_(18)O_(62)/TiO_2的光催化活性,选用甲基橙为模型分子,在紫外光、可见光和微波辅射等多模式作用下,对其进行了光催化活性的研究。结果显示,紫外光催化过程中纳米复合材料3DOM H_6P_2W_(18)O_(62)/TiO_2的活性最高,且在可见光、微波作用下3DOM H_6P_2W_(18)O_(62)/TiO_2对染料均具有一定的降解效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号