首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
采用基于密度泛函理论的第一性原理方法,计算Fe3O4,Fe3O4(001)表面以及过渡元素掺杂表面的电子结构和磁性。结果表明Fe3O4的半金属性主要来源于B位Fe离子,并且Fe的3d轨道发生强烈自旋极化;比较(001)表面不同终端A和B终端的表面能和电子结构,得出两种终端稳定性存在差异且A终端较稳定同时表现半金属性;由过渡元素V、Cr、Mn、Co、Cu和Zn取代Fe3O4(001)表面A终端A位Fe进行掺杂,形成的6种新表面结构都保持了半金属性。对比它们的表面能和磁矩,Mn掺杂的表面结构最稳定并且磁矩明显增大。  相似文献   

2.
刘璐  郑成航  高翔 《分子催化》2017,31(6):544-552
基于第一性原理密度泛函计算方法研究了NO在Mn_2O_3(110)面的吸附行为,计算了Mn_2O_3(110)面吸附NO和O_2的吸附构型的结构参数、吸附能和电子结构.结果表明,在Mn_2O_3(110)表面上,NO倾向于吸附在Mn top位,吸附前后的结构总能变化在-0.61~-1.29 eV之间,NO吸附后Mn吸附位周围的配位结构发生变化,使得Mn的电子向NO转移.进一步研究了吸附O_2后的Mn_2O_3表面再进一步吸附NO的行为,发现了ONOO*结构的形成.NO和O_2在表面共吸附形成ONOO*结构时的吸附能(-1.23和-1.39 eV)高于单纯吸附NO时的吸附能,此时Mn的电子向ONOO*结构转移,NO和O_2投影态密度的电子峰广泛交叠,说明成键原子之间有强共价键作用.  相似文献   

3.
以Al_2O_3为载体,Fe、Mn为活性组分,采用浸渍法制备了Mn-Fe/Al_2O_3催化剂,研究了Mn-Fe/Al_2O_3催化剂的低温脱硝性能.实验结果表明,Fe负载量为7%时,7Fe/Al_2O_3催化剂显示出较佳的低温脱硝性能;添加Mn能明显改变7Fe/Al_2O_3催化剂低温脱硝性能,其中当Mn/Fe质量比为11∶7时,11Mn7Fe/Al_2O_3催化剂获得最佳低温脱硝效率.对催化剂的表征结果表明,比表面积和孔径的大小不是决定催化剂性能高低的主要因素;Mn O2和Fe2O3在x Mn7Fe/Al_2O_3催化剂中具有较强的相互作用,影响活性组分微观晶体结构,改善活性组分分散程度,从而提高了催化剂的低温脱硝性能;Fe的添加使催化剂表面酸性位点数目增加,从而提高7Fe/Al_2O_3催化剂的低温脱硝效率.添加Mn不仅增多了11Mn7Fe/Al_2O_3催化剂表面酸性位点数目增加,而且使催化剂表面出现新的中强性酸位点,使其低温脱硝效率进一步提高;经过详细分析,结果表明表面吸附氧Oβ、Mn4+和Fe3+的含量较高是11Mn7Fe/Al_2O_3催化剂脱硝活性较高的主要原因.  相似文献   

4.
研究发现,Pd和Co_3O_4催化剂均可有效地催化甲烷燃烧反应,且Pd掺杂的Co_3O_4催化剂上甲烷反应活性优于单纯的Pd和Co_3O_4催化剂,可见两者存在明显的协同效应.然而由于Co_3O_4本身复杂的表面配位环境,相关理论模拟研究依然较少.同时,由于甲烷分子中C–H键有着非常高的键能,且该分子具有很高的对称性,导致C–H键活化往往是甲烷选择转化和完全燃烧反应中最困难的一步.由于Co_3O_4表面电子结构比较复杂,因此本文基于Co_3O_4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co_3O_4表面Pd.O位点的甲烷反应活性.对于Co_3O_4(001)–A晶面,暴露面金属离子只有未饱和的八面体Co~o,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Co~o结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co_3O_4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co_3O_4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co_3O_4(001)和(011)表面.为了进一步理解Pd掺杂影响Co_3O_4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3~(δ–)获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co_3O_4(001),(011)和1%,2%,3%Pd掺杂的Co_3O_4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co_3O_4催化甲烷燃烧.  相似文献   

5.
采用一步醇热法制备了Cd掺杂δ-Bi_2O_3,并用X射线衍射(XRD)、透射电子显微镜(TEM)等手段对其微观结构、表面元素、能带结构、光电化学性质等进行表征。结果表明Cd掺杂δ-Bi_2O_3是由二维纳米片组装而成的微球,Cd以Cd2+形式掺杂在δ-Bi_2O_3晶格间隙。由于Cd的掺杂,δ-Bi_2O_3禁带宽减小,光响应范围扩大,光生载流子的传递与分离效率提高。在常温常压下,考察了Cd-δ-Bi_2O_3可见光催化固氮效果,结果表明,光照3 h时,6%Cd-δ-Bi_2O_3的光催化固氮速率为1.6 mmol·g~(-1)·h~(-1)·L~(-1),是δ-Bi_2O_3的10.67倍。Cd的掺杂点会成为光生电子的陷阱,延缓光生电子的表面传递,增强目标分子的化学吸附。  相似文献   

6.
以聚酰胺-胺(PAMAM)树形分子为稳定剂,采用溶剂热法制得了纯相BiFeO_3纳米颗粒(A)和BiFeO_3/Bi_(25)FeO_(40)/Fe_2O_3复合纳米颗粒(B),并采用HRTEM、XRD、UV-Vis、SQUID对其结构和性能进行了表征。2种颗粒结晶良好,粒径小于10 nm,能有效光催化降解亚甲基蓝,磁性回收率分别为74.6%(A)和90.2%(B)。BiFeO_3/Bi_(25)FeO_(40)/Fe_2O_3复合纳米颗粒的光催化与磁性能均优于纯相BiFeO_3纳米颗粒,是因为复合纳米颗粒含有多种相,相界面存在异质结构有利于光生载流子的分离和迁移,并且对可见光的吸收能力更强。  相似文献   

7.
TiO_2因具有多种优异的特性被广泛应用在半导体光催化领域,但是纳米结构的TiO_2颗粒细微,在进行光催化反应之后,难以回收再利用。本文以廉价钛铁矿为原料制备光催化剂TiO_2,同时利用副产物铁合成Fe_3O_4,并采用简单温和的浸渍法制备Fe_3O_4/TiO_2磁性复合材料。通过XRD、FT-IR、SEM、EDS等手段对材料形态结构进行表征分析,并以光降解有机污染物若丹明B为探针反应,考察其光催化性能。结果表明,质量比为1∶10的Fe_3O_4/TiO_2复合材料结构稳定、分散均匀,具有最优的光催化活性(波长356nm下反应3h,若丹明B降解率达到64.0%),并表现出良好的重复性。同时,动力学结果显示降解符合一级反应动力学。  相似文献   

8.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

9.
基于密度泛函理论(DFT)的第一性原理计算,研究了过渡金属元素Sc、Cr和Mn掺杂对Mg2Ge晶体光、电、磁性质的影响。结果表明,Sc掺杂能使Mg2Ge的费米能级进入导带,呈n型简并半导体;Cr和Mn掺杂能使Mg2Ge能带结构和态密度在费米能级附近产生自旋劈裂而形成净磁矩,表现为半金属磁体和稀磁半导体,体系净磁矩均来自杂质原子3d轨道电子及其诱导极化的Ge4p态和Mg2p态自旋电子。与本征Mg2Ge相比,掺杂体系静态介电常数增大,扩展了吸收光谱,提升了近红外光波段吸收能力。  相似文献   

10.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

11.
The Fe3O4-poly(l-lactide) (Fe3O4-PLLA) magnetic microparticles were successfully prepared in a process of solution-enhanced dispersion by supercritical CO2 (SEDS), and their morphology, particle size, magnetic mass content, surface atom distribution and magnetic properties were characterized. Indomethacin (Indo) was used as a drug model to produce drug-polymer magnetic composite microparticles. The resulting Fe3O4-PLLA microparticles with mean size of 803 nm had good magnetic property and a saturation magnetization of 24.99 emu/g. The X-ray photoelectron spectroscopy (XPS) test indicated that most of the Fe3O4 were encapsulated by PLLA, which indicated that the Fe3O4-PLLA magnetic microparticles had a core–shell structure. After further loading with drug, the Indo-Fe3O4-PLLA microparticles had a bigger mean size of 901 nm, and the Fourier transform infrared spectrometer (FTIR) analysis demonstrated that the SEDS process was a typical physical coating process to produce drug-polymer magnetic composite microparticles, which is favorable for drugs since there is no change in chemistry. The in vitro cytotoxicity test showed that the Fe3O4-PLLA magnetic microparticles had no cytotoxicity and were biocompatible, which means there is potential for biomedical application.  相似文献   

12.
以FeCl3·6H2O作为单一铁源,1,6-己二胺作为胺化试剂,利用无模板的溶剂热方法制备了胺基功能化的磁性Fe3O4纳米粒子,并利用其键合叶酸分子,制备出表面修饰了叶酸的磁性Fe3O4复合纳米粒子。利用傅里叶变换红外光谱仪、X-射线衍射仪、透射电镜、差热-热重分析仪和振动样品磁强计对所得纳米粒子的形貌、粒径、化学组成和磁性能进行了表征。结果表明,叶酸分子通过化学键牢固键合在磁性纳米Fe3O4粒子表面,叶酸修饰的复合纳米粒子仍然具有良好的磁性能。  相似文献   

13.
<正>众所周知,纳米材料的尺寸大小、晶型、形貌构型等结构特征对材料的化学物理性能有重要的影响[1],由于特殊形貌的新材料所具有独特、新颖、高效的化学物理等方面的性质以及在众多领域中的潜在应用[2],特别是3D花状空心纳米结构新物质[3-4],新形貌物质的纳米材料的制备方法和应用特性已经吸引了世界上材料领域的广泛兴趣和关注[5]。目前为止,合成3D纳米结构的方法有自组装法、三维导向连接法以及水热法等,即通过使用有  相似文献   

14.
This article reports the synthesis of the poly(sodium 4-styrenesulfonate)-grafted Fe3O4/SiO2 particles via two steps. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stöber method. Second, the modified silica-coated Fe3O4 nanoparticles were covered with the outer shell of anionic polyelectrolyte by surface-initiated atom transfer radical polymerization. The resulted composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). The XRD results indicated that the surface modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. TEM studies revealed nanoparticles remained monodisperse. The detection of sulfur and sodium signals was a convincing evidence that sodium 4-styrenesulfonate was grafted onto the surface of the magnetic silica in XPS analysis. Finally, super-paramagnetic properties of the composite particles, and the ease of modifying the surfaces may make the composites of important use in mild separation, enzyme immobilization, etc.  相似文献   

15.
磁性Fe3O4/石墨烯Photo-Fenton催化剂的制备及其催化活性   总被引:3,自引:0,他引:3  
采用共沉淀法制备磁性Fe3O4/GE(石墨烯)催化剂,实现Fe3O4纳米颗粒生长和氧化石墨烯还原同步进行,采用FTIR、XRD、TEM及低温氮吸附-脱附等对Fe3O4/GE纳米催化剂的物相、颗粒粒径及比表面积进行了表征。在H2O2存在条件下,以亚甲基蓝为目标降解物,考察了在模拟太阳光下Fe3O4/GE的催化活性,当氧化石墨烯与Fe3O4的质量比为1∶10时,经过2 h催化反应,在pH=6条件下,对亚甲基蓝的降解率达到98.7%,经过10次循环使用后对染料溶液的降解率仍保持在95.7%以上,明显优于纯的Fe3O4。  相似文献   

16.
可控粒径纳米Fe_3O_4的制备及其磁性研究   总被引:2,自引:0,他引:2  
本文用空气氧化法,在可见光作用下,添加配合剂(EDTA、柠檬酸、酒石酸、谷氨酸)在室温进行了不同粒径纳米Fe3O4的制备及其磁性能研究。结果表明:在可见光作用下,随EDTA、柠檬酸、酒石酸、谷氨酸等配合剂的添加,得到纳米Fe3O4的粒径有所减小、分散性有所提高;配合剂及可见光共存时,体系反应速率得到提高,高的反应速率使纳米Fe3O4晶粒减小;控制适当的光照度和添加剂的量,室温可得到11.8~29.6nm的Fe3O4颗粒。不同粒径纳米Fe3O4分别呈现出超顺磁性、铁磁性特征。  相似文献   

17.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

18.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号