首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The preparation process and upconversion luminescence of the Er(3+)-doped glass ceramics containing Ba(2)LaF(7) nanocrystals were investigated. The formation of Ba(2)LaF(7) nanocrystals in the glass ceramics was confirmed by X-ray diffraction. Er(3+)-doped glass ceramics containing Ba(2)LaF(7) nanocrystals exhibited highly efficient upconversion luminescence in comparison with glasses. With the increase of heat treatment temperature the upconversion luminescence intensity increased gradually. The composition of glasses was also found to have significant influence on the crystallization process of glass ceramics. The mixture of Ba(2)LaF(7) and La(2)O(3) nanocrystals and the mixture of La(2)F(3) and La(2)O(3) nanocrystals in the glass ceramics could be obtained by controlling different compositions of glasses. The upconversion luminescence intensity also varied significantly with different nanocrystals in the glass ceramics.  相似文献   

2.
The nanocrystals (NCs) of tetragonal barium yttrium fluoride (BaYF(5)) doped 1 mol% Ln(3+) (Ln=Er, Tm, Ho) and 20 mol% Yb(3+) with different morphologies and sizes have been successfully synthesized through a facile hydrothermal method. The influences of pH values of the initial solution and fluorine sources on the final structure and morphology of the products have been well investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure and morphology of these samples prepared at different conditions. And it is found that BaYF(5):Yb/Ln NCs prepared at pH value of 10 using NaBF(4) as F(-) source have a uniform spherical morphology with average diameter of 25 nm. Additionally, the up-conversion (UC) properties of Yb/Er, Yb/Tm, and Yb/Ho doped BaYF(5) nanoparticles were also discussed. Under 980 nm laser excitation, the BaYF(5):Yb/Er, BaYF(5):Yb/Tm, and BaYF(5):Yb/Ho NCs exhibit green, whitish blue, and yellow green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

3.
Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.  相似文献   

4.
Li X  Gai S  Li C  Wang D  Niu N  He F  Yang P 《Inorganic chemistry》2012,51(7):3963-3971
Three types of high-quality, monodisperse lanthanide fluoride colloidal nanocrystals (NCs) including LnF(3) (Ln = La-Pr), NaLnF(4) (Ln = Sm-Er), and Na(5)Ln(9)F(32) (Ln = Tm-Lu) with two crystal phases (hexagonal and cubic) and a rich variety of morphologies have been synthesized in high boiling organic solvents oleic acid and 1-octadecene, via a thermal decomposition pathway. The as-synthesized NCs were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra, respectively. It is found that the as-synthesized NCs consist of monodisperse nanoparticles with diverse shapes and narrow size distribution, which can easily disperse in nonpolar cyclohexane solvent. Additionally, a possible mechanism of NC nucleation and growth has been proposed. The results reveal that the formation of monodisperse NCs closely correlates with the inherent nature of lanthanide series from La to Lu. Under 980 nm NIR excitation, as-synthesized Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho)-doped NaGdF(4) and Na(5)Lu(9)F(32) colloidal NCs show the respective characteristic up-conversion (UC) emissions of Er(3+), Tm(3+), and Ho(3+), which are promising for applications in biolabels, bioimaging, displays, and other optical technologies.  相似文献   

5.
Yttrium tungstate precursors with novel 3D hierarchical architectures assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method with the assistance of sodium dodecyl benzenesulfonate (SDBS). After calcination, the precursors were easily converted to Y(2)(WO(4))(3) without an obvious change in morphology. The as-prepared precursors and Y(2)(WO(4))(3) were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra, respectively. The results reveal that the morphology and dimensions of the as-prepared precursors can be effectively tuned by altering the amounts of organic SDBS and the reaction time, and the possible formation mechanism was also proposed. Upon ultraviolet (UV) excitation, the emission of Y(2)(WO(4))(3):x mol% Eu(3+) microcrystals can be tuned from white to red, and the doping concentration of Eu(3+) has been optimized. Furthermore, the up-conversion (UC) luminescence properties as well as the emission mechanisms of Y(2)(WO(4))(3):Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho) microcrystals were systematically investigated, which show green (Er(3+), (4)S(3/2), (2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow (Ho(3+), (5)S(2)→(5)I(8)) luminescence under 980 nm NIR excitation. Moreover, the doping concentration of the Yb(3+) has been optimized under a fixed concentration of Er(3+) for the UC emission of Y(2)(WO(4))(3):Yb(3+)/Er(3+).  相似文献   

6.
Monodisperse Er(3+):NaGdF(4)@Ho(3+):NaGdF(4)@NaGdF(4) active-core/active-shell/inert-shell nanocrystals, which can extend the near-infrared wavelength excitable range for upconversion (UC) emissions, were successfully fabricated for the first time. Importantly, doping of Er(3+) and Ho(3+) into the core and shell respectively suppresses adverse energy transfers between them, resulting in intense UC emissions for both Er(3+) and Ho(3+) dopants.  相似文献   

7.
By thermal decomposition in the presence only of oleylamine, sub-10 nm hexagonal NaLuF(4)-based nanocrystals codoped with Gd(3+), Yb(3+), and Er(3+) (or Tm(3+)) have been successfully synthesized. Sub-10 nm β-NaLuF(4): 24 mol % Gd(3+), 20 mol % Yb(3+), 1 mol % Tm(3+) nanocrystals display bright upconversion luminescence (UCL) with a quantum yield of 0.47 ± 0.06% under continuous-wave excitation at 980 nm. Furthermore, through the use of β-NaLuF(4):Gd(3+),Yb(3+),Tm(3+) nanocrystals as a luminescent label, the detection limit of <50 nanocrystal-labeled cells was achieved for whole-body photoluminescent imaging of a small animal (mouse), and high-contrast UCL imaging of a whole-body black mouse with a penetration depth of ~2 cm was achieved.  相似文献   

8.
First heterometal-organic single source precursors for NaYF(4) nanomaterials as a host matrix for up-conversion emission are reported. These novel heterobimetallic derivatives NaY(TFA)(4)(diglyme) (1), [Na(triglyme)(2)][Y(2)(TFA)(7)(THF)(2)] (2) and Na(2)Y(TFA)(5)(tetraglyme) (3) (TFA = trifluoroacetate), which were fully characterized by elemental analysis, FT-IR and (1)H NMR spectroscopy, TG-DTA data as well as single crystal X-ray structures, are advantageous in terms of being anhydrous and having lower decomposition temperatures in comparison to the homometallic precursor Y(TFA)(3)(H(2)O)(3). In addition, they also contain chelating glyme ligands, which act as capping reagents during decomposition to control the NaYF(4) particle size and render them monodisperse in organic solvents. On decomposition in 1-octadecene, the molecular derivatives 1 and 3 are converted, in the absence of any surfactant or capping reagent, to cubic NaYF(4) nanocrystals at significantly lower temperatures (below 250 °C). At higher temperature, a mixture of the cubic and hexagonal phases was obtained, the relative ratio of the two phases depending on the reaction temperature. A pure hexagonal phase, which is many folds more efficient for UC emission than the cubic phase, was obtained by calcining nanocrystals of mixed phase at 400 °C. In order to co-dope this host matrix with up-converting lanthanide cations, analogous complexes NaLn(TFA)(4)(diglyme) [Ln = Er (4), Tm (5), Yb (6)] and Na(2)Ln(TFA)(5)(tetraglyme) [Ln = Er (7), Yb (8)] were also prepared and characterized. The decomposition in 1-octadecene of suitable combinations and appropriate molar ratios of these yttrium, ytterbium and erbium/thulium derivatives gave cubic and/or hexagonal NaYF(4): Yb(3+), Er(3+)/Tm(3+) nanocrystals (NCs) capped by diglyme or tetraglyme ligands, which were characterized by IR, TG-DTA data, EDX analysis and TEM studies. Surface modification of these NCs by ligand exchange reactions with poly acrylic acid (PAA) and polyethyleneglycol (PEG) diacid 600 was also carried out to render them water soluble. The THF solutions of suitable combinations of the diglyme derivatives were also used to elaborate the thin films of NaYF(4):Yb(3+), Er(3+)/Tm(3+) on a glass or Si wafer substrate by spin coating. The multicolour up-conversion fluorescence was successfully realized in the Yb(3+)/Er(3+) (green/red) and Yb(3+)/Tm(3+) (blue/violet) co-doped NaYF(4) nanoparticles and thin films, which demonstrates that they are promising UC nanophosphors of immense practical interest. The up-conversion excitation pathways for the Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) co-doped materials are discussed.  相似文献   

9.
Xia Z  Wang X  Wang Y  Liao L  Jing X 《Inorganic chemistry》2011,50(20):10134-10142
A new family of chloroborate compounds, which was investigated from the viewpoint of rare earth ion activated phosphor materials, have been synthesized by a conventional high temperature solid-state reaction. The crystal structure and thermally stable luminescence of chloroborate phosphors Ba(2)Ln(BO(3))(2)Cl:Eu(2+) (Ln = Y, Gd, and Lu) have been reported in this paper. X-ray diffraction studies verify the successful isomorphic substitution for Ln(3+) sites in Ba(2)Ln(BO(3))(2)Cl by other smaller trivalent rare earth ions, such as Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. The detailed structure information for Ba(2)Ln(BO(3))(2)Cl (Ln = Y, Gd, and Lu) by Rietveld analysis reveals that they all crystallize in a monoclinic P2(1)/m space group. These compounds display interesting and tunable photoluminescence (PL) properties after Eu(2+)-doping. Ba(2)Ln(BO(3))(2)Cl:Eu(2+) phosphors exhibit bluish-green/greenish-yellow light with peak wavelengths at 526, 548, and 511 nm under 365 UV light excitation for Ba(2)Y(BO(3))(2)Cl:Eu(2+), Ba(2)Gd(BO(3))(2)Cl:Eu(2+), and Ba(2)Lu(BO(3))(2)Cl:Eu(2+), respectively. Furthermore, they possess a high thermal quenching temperature. With the increase of temperature, the emission bands show blue shifts with broadening bandwidths and slightly decreasing emission intensities. It is expected that this series of chloroborate phosphors can be used in white-light UV-LEDs as a good wavelength-conversion phosphor.  相似文献   

10.
In(2)O(3) sol-gel thin films made with LaF(3):Ln(3+) (Ln=Er, Nd, and Eu) nanoparticles were prepared and showed sensitized emission of the lanthanide ions after In(2)O(3) matrix excitation. The excitation spectra showed an In(2)O(3) absorption band in addition to the excitation peaks of the lanthanide ions, clearly demonstrating that there is energy transfer from the In(2)O(3) matrix to Ln(3+) (Er(3+), Nd(3+), and Eu(3+)). Similarly, HfO(2) and ZrO(2) sol-gel thin films made with LaF(3):Ln(3+) nanoparticles also showed energy transfer from the semiconductor matrix to the lanthanide ions.  相似文献   

11.
Hollow La(2)O(3):Ln (Ln = Yb/Er, Yb/Ho) microspheres with up-conversion (UC) luminescence properties were successfully synthesized via a facile sacrificial template method by employing carbon spheres as hard templates followed by a subsequent heating process. The structure, morphology, formation process, and fluorescent properties are well investigated by various techniques. The results indicate that the hollow La(2)O(3):Ln microspheres can be well indexed to the hexagonal La(2)O(3) phase. The hollow La(2)O(3):Ln microspheres with uniform diameter of about 270 nm maintain the spherical morphology and good dispersion of the carbon spheres template. The shell of the hollow microspheres consists of numerous nanocrystals with the thickness of approximately 40 nm. Moreover, the possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow La(2)O(3):Ln microspheres has also been proposed. The Yb/Er and Yb/Ho codoped La(2)O(3) hollow spheres exhibit bright up-conversion luminescence with different colors derived from different activators under the 980 nm NIR laser excitation. Furthermore, the doping concentration of the Yb(3+) is optimized under fixed concentration of Er(3+)/Ho(3+). This material may find potential applications in drug delivery, hydrogen and Li ion storage, and luminescent displays based on the uniform hollow structure, dimension, and UC luminescence properties.  相似文献   

12.
Monodisperse Yb(3+)/Er(3+):MFCl nanocrystals were fabricated via a simple and effective seed-based chlorination route for the first time. Remarkably, their upconversion emissions are found to be greatly intensified compared with those of the well-reported Er(3+)/Yb(3+):SrF(2) with the same size and shape.  相似文献   

13.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

14.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

15.
Complete phase transition from hexagonal LnF(3) (Ln(3+) = La(3+), Ce(3+), Pr(3+)) to monodisperse ultrasmall (~7 nm) cubic Ln(0.8)M(0.2)F(2.8) (M(2+) = Ca(2+), Sr(2+), Ba(2+)) disordered solid solution nanocubes was successfully achieved through alkaline-earth doping, which induced great intensification of the near-infrared to visible upconversion emissions of the optically active rare earth ions.  相似文献   

16.
Sodium and potassium tetrakis(3,5-di-tert-butylpyrazolato)lanthanoidate(III) complexes [M[Ln(tBu(2)pz)(4)]] have been prepared by reaction of anhydrous lanthanoid trihalides with alkali metal 3,5-di-tert-butylpyrazolates at 200-300 degrees C, and a 1,2,4,5-tetramethylbenzene flux for M=K. On extraction with toluene (or occasionally directly from the reaction tube) the following complexes were isolated: [Na(PhMe)[Ln(tBu(2)pz)(4)]] (1 Ln; 1 Ln=1 Tb, 1 Ho, 1 Er, 1 Yb), [K(PhMe)[Ln(tBu(2)pz)(4)]].2 PhMe (2 Ln; 2 Ln=2 La, 2 Sm, 2 Tb, 2 Ho, 2 Yb, 2 Lu), [Na[Ln(tBu(2)pz)(4)]](n) (3 Ln; 3 Ln=3 La, 3 Tb, 3 Ho, 3 Er, 3 Yb), [K[Ln(tBu(2)pz)(4)]](n) (4 Ln; 4 Ln=4 La, 4 Nd, 4 Sm, 4 Tb, 4 Ho, 4 Er, 4 Yb, 4 Lu), with the last two classes generally being obtained by loss of toluene from 1 Ln or 2 Ln, and [Na(tBu(2)pzH)[Ln(tBu(2)pz)(4)]].PhMe (5 Ln; 5 Ln=5 Nd, 5 Er, 5 Yb). Extraction with 1,2-dimethoxyethane (DME) after isolation of 2 Ho yielded [K(dme)[Ho(tBu(2)pz)(4)]] (6 Ho). X-ray crystal structures of 1 Ln (=1 Tb, 1 Ho; P2(1)/c), 2 Ln (=2 La, 2 Sm, 2 Tb, 2 Yb, 2 Lu; Pnma), 3,4 Ln (=3 La, 3 Er, 4 Sm; P2(1)/m), and 5 Ln (=5 Nd, 5 Er, and 5 Yb; P1) show each group to be isomorphous regardless of the size of the Ln(3+) ion. All complexes contain eight-coordinate [Ln(eta(2)-tBu(2)pz)(4)] units. These are further linked to the alkali metal by bridging through two (1,2,5 Ln) or three (3,4 Ln) tBu(2)pz groups which show striking coordination versatility. Sodium is coordinated by an eta(4)-PhMe, a micro-eta(2):eta(2)-tBu(2)pz, and a micro-eta(4)(Na):eta(2)(Ln)-tBu(2)pz ligand in 1 Ln, and by one eta(1)-tBu(2)pzH and two micro-eta(3)(Na):eta(2)(Ln) ligands in 5 Ln. By contrast, potassium has one eta(6)-PhMe and two micro-eta(5)(K):eta(2)(Ln) ligands in 2 Ln. Classes 3,4 Ln form polymeric chains with the alkali metal bonded by two micro-eta(3)(NNC-M):eta(2)(Ln)-tBu(2)pz ligands within [MLn(tBu(2)pz)(4)] units which are joined together by eta(1)(C)-tBu(2)pz-Na, K linkages.  相似文献   

17.
The preparation of nearly monodisperse (40 nm), silica-coated LaF(3):Ln(3+) nanoparticles and their bioconjugation to FITC-avidin (FITC=fluorescein isothiocyanate) is described in this report. Doping of the LaF(3) core with selected luminescent Ln(3+) ions allows the particles to display a range of emission lines from the visible to the near-infrared region (lambda=450-1650 nm). First, the use of Tb(3+) and Eu(3+) ions resulted in green (lambda=541 nm) and red (lambda=591 and 612 nm) emissions, respectively, by energy downconversion processes. Second, the use of Nd(3+) gave emission lines at lambda=870, 1070 and 1350 nm and Er(3+) gave an emission line at lambda=1540 nm by energy downconversion processes. Additionally, the Er(3+) ions gave green and red emissions and Tm(3+) ions gave an emission at lambda=800 nm by upconversion processes when codoped with Yb(3+) (lambda(ex)=980 nm). Bioconjugation of avidin, which has a bound fluorophore (FITC) as the reporter, was carried out by means of surface modification of the silica particles with 3-aminopropyltrimethoxysilane, followed by reaction with the biotin-N-hydroxysuccinimide activated ester to form an amide bond, imparting biological activity to the particles. A 25-fold or better increase in the FITC signal relative to the non-biotinylated silica particles indicated that there is minimal nonspecific binding of FITC-avidin to the silica particles.  相似文献   

18.
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.  相似文献   

19.
Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50?nm). The unique role of the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF(6)) and n-octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

20.
The f-electronic structures of the ground states of anionic bis(phthalocyaninato)lanthanides, [Pc(2)Ln](-) (Pc = dianion of phthalocyanine, Ln = Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), or Yb(3+)), are determined. Magnetic susceptibilities of the powder samples of [Pc(2)Ln]TBA (TBA = tetra-n-butylammonium cation) in the range 1.8-300 K showed characteristic temperature dependences which resulted from splittings of the ground-state multiplets. NMR signals for the two kinds of protons on the Pc rings at room temperature were shifted to lower frequency with respect to the diamagnetic Y complex in Ln = Tb, Dy, and Ho cases, and to higher frequency in Er, Tm, and Yb cases. The ratios of the paramagnetic shifts of the two positions were near constant in the six cases. This indicates that the shifts are predominantly caused by the magnetic dipolar term, which is determined by the anisotropy of the magnetic susceptibility of the lanthanide ion. Using a multidimensional nonlinear minimization algorithm, we determined a set of ligand-field parameters that reproduces both the NMR and the magnetic susceptibility data of the six complexes simultaneously. Each ligand-field parameter was assumed to be a linear function of atomic number of the lanthanide. The energies and wave functions of the sublevels of the multiplets are presented. Temperature dependences of anisotropies in the magnetic susceptibilities are theoretically predicted for the six complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号