首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
采用索氏提取法以正己烷为提取溶剂提取纺织品中的邻苯二甲酸酯类物质(PAEs),以强阴离子交换固相萃取(SPE)小柱净化本底杂质并富集待测物,建立了纺织品中10余种PAEs环境激素的同时测定方法。采用的固相萃取条件为:5 mL正己烷活化、3 mL异辛烷淋洗、2 mL含15%乙酸乙酯的正己烷溶液洗脱。SPE能有效地对提取液进行富集浓缩,同时对纺织物提取液中的杂质净化效果突出。该方法准确可靠,重现性好,在5~100 mg/kg 添加水平,PAEs各化合物的回收率为86.3%~102.7%,相对标准偏差(RSD)一般小于5%。检测的10余种PAEs中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二戊酯(DAP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二正辛酯(DNOP)的方法检出限小于1mg/kg,邻苯二甲酸二异壬酯(DINP)与邻苯二甲酸二异癸酯(DIDP)的方法检出限分别为1.74 mg/kg和1.55 mg/kg。  相似文献   

2.
梁婧  庄婉娥  林芳  姚文松  温裕云  欧延  弓振斌 《色谱》2014,32(11):1242-1250
对不同类型复杂基质样品中邻苯二甲酸酯(PAEs)测定的前处理方法进行了研究。待测样品类型包括沉积物、土壤、悬浮颗粒物、地表灰尘、生物组织、化妆品、皮革、塑料以及近岸/河口海水等复杂基质样品。这些样品中PAEs测定的最常用方法为气相色谱-质谱法(GC-MS),针对该测定方法所需的样品前处理研究集中于待测PAEs的萃取、净化等步骤操作条件的确定。对各种样品基质前处理方法的研究结果表明,二氯甲烷是进行固液萃取时最佳的超声振荡提取溶剂;而对各种复杂基质样品的净化,硅胶则是经济、实用的固相萃取填料;C18是最常用的近岸/河口海水样品中PAEs的预富集填料;一定比例的正己烷与乙酸乙酯混合溶液是适宜的固相萃取洗脱液。优化实验条件下,各种样品基质中PAEs的加标回收率高于58%,方法相对标准偏差(RSD)小于10.5%(n=6);方法对沉积物样品中PAEs的检出限(DL,3σ)最低,在0.3 μg/kg(邻苯二甲酸二丁酯)~5.2 μg/kg(邻苯二甲酸二异壬酯)之间;对近岸/河口海水样品的检出限(DL,3σ)在6 ng/L(邻苯二甲酸二丙酯)~67 ng/L(邻苯二甲酸二异癸酯)之间,能满足上述各类复杂基质样品中16种PAEs测定的需要。  相似文献   

3.
鉴于现用标准的前处理方式存在操作复杂、耗时较长及设备昂贵等问题,选用易于实现的超声提取技术,通过考察不同提取条件对质控样中邻苯二甲酸酯(PAEs)类增塑剂提取效果的影响,提出了超声提取-气相色谱-质谱法测定塑料快递包装中邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二异壬酯(DINP)和邻苯二甲酸二异癸酯(DIDP)等6种PAEs类增塑剂含量的方法。将塑料包装样品剪成小块,称取0.5 g于玻璃萃取瓶中,加入20 mL二氯甲烷,于25℃超声30 min,上清液经0.45μm有机滤膜过滤,再加入一定量的邻苯二甲酸二戊酯(内标)溶液,使其质量浓度为5.0 mg·L^(-1)。6种PAEs在DB-5MS毛细管色谱柱上以柱升温程序的方式进行分离,用配有电子轰击离子源的质谱仪以全扫描方式进行检测,内标法定量。结果显示:6种PAEs标准曲线的线性范围为0.10~5.0 mg·L^(-1)(DBP、BBP、DEHP和DNOP)和1.0~50 mg·L^(-1)(DINP和DIDP),检出限(3S/N)为0.03~0.63 mg·kg^(-1);对空白样品进行加标回收试验,6种PAEs的回收率为92.2%~105%,测定值的相对标准偏差(n=6)为0.76%~3.2%;方法用于10个塑料快递包装样品分析,除两种样品检出DBP和DEHP外,其他样品中均未检出目标物;对比了超声提取法、索氏提取法(GB/T 22048-2015)和微波消解法(SN/T 2249-2009)对质控样和实际样品测定结果的影响,质控样的测定结果均在认定值的不确定度范围内,实际样品中有3个样品检出DBP和DEHP,其余样品中均为未检出目标物,并且这3种前处理方式所得结果接近。  相似文献   

4.
刘芃岩  高丽  申杰  刘微  蔡立鹏 《色谱》2010,28(5):517-520
建立了固相微萃取(SPME)-气相色谱法(GC)分析环境水样中痕量邻苯二甲酸酯类化合物(PAEs)的方法。选用100 μm聚二甲基硅烷(PDMS)萃取纤维,在磁力搅拌条件下,对水样中的PAEs萃取富集60 min,然后直接注入GC进样口,在250 ℃温度下解吸4 min后进行分析测定,13种PAEs能得到充分提取和分离。方法的重现性(以相对标准偏差(RSD)计为0.2%~9.7%,检出限为0.02~0.83 μg/L。将本方法应用于白洋淀水样中PAEs的分析检测发现,样品中邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)检出率相对较高。对水样进行两个浓度水平(2.5 μg/L和5.0 μg/L)的加标试验,加标回收率为75.3%~111.0%,RSD为2.1%~8.0%(n=3),能够满足环境水样中痕量PAEs的测定要求。  相似文献   

5.
建立了环境空气细颗粒物(PM2.5)中痕量邻苯二甲酸酯类化合物(PAEs)的微波萃取(ME)/气相色谱-质谱联用(GC-MS)分析方法。样品经乙酸乙酯-丙酮混合溶剂微波提取后,经DB-5MS色谱柱分离,采用SCAN/SIM模式进行质谱测定,外标法定量。结果显示,PAEs的线性范围为100~1 000 pg,方法的检出限为0.101~0.262 ng/m3,加标回收率81.6%~129%。将本方法应用于常州化工园区环境空气细颗粒物中PAEs的分析检测发现,大部分PAEs在样品中检出,其中邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛酯(DEHP)检出浓度较高,方法能够满足环境空气细颗粒物中痕量PAEs的测定要求。  相似文献   

6.
建立了采用超声辅助分散液液微萃取技术结合高效液相色谱法(UA-DLLME-HPLC)对4种邻苯二甲酸酯(PAEs)进行富集、检测的方法,并成功应用于实际水样分析。实验中采用富集因子来评价萃取效率,考察并优化了影响萃取效率的主要因素,包括萃取剂类型和用量、分散剂类型和用量、超声时间、离子强度、萃取时间和pH值等。结果表明: 在最佳萃取条件下,该法对4种PAEs(邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯和邻苯二甲酸二正辛酯)具有较高的富集能力,富集因子分别为71、144、169和159;检出限分别为3.78、1.77、3.07和3.30 μg/L。对实验室自来水、某品牌矿泉水以及湖水分别加标50、200及500 μg/L的回收率为82.99%~114.47%,相对标准偏差为1.93%~8.31%。该法简便、快速、环保,可以用于测定实际水样中的PAEs类增塑剂。  相似文献   

7.
GC-EI-MS内标法分析鱼肉中邻苯二甲酸酯   总被引:3,自引:0,他引:3  
谭君  林竹光 《化学学报》2007,65(24):2875-2882
鱼肉样品以Florisil硅藻土层析柱净化后, 经气相色谱-电子轰击离子源-质谱法(GC-EI-MS)分析其中8种邻苯二甲酸酯(PAEs)含量: 邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二戊酯(DPeP)、邻苯二甲酸二环己基酯(DCHP)、邻苯二甲酸二己酯(DHP)、邻苯二甲酸二(2-乙基己基)酯(DEHP). 比较了外标和内标法定量, 并确定苯甲酸苄基酯为内标物; 优化了提取剂、吸附剂和洗脱剂的种类, 以及洗脱体积等样品前处理方法; 尤其对分析空白的控制问题进行了详细讨论; 准确分析了5种鱼样品中此类物质含量. 该方法的线性范围为50.0~800 μg•L-1, 相关系数(R)大于0.99986, 相对标准偏差(Relative standard deviation, RSD)均小于12.7%, 检测限(Limit of detection, LOD)低于3.66 μg•L-1, 样品的加标回收率为74.0%~113%. 其线性范围、相关系数、准确度、精密度和LOD等指标均满足鱼肉中多种PAEs同时分析的要求.  相似文献   

8.
建立了气相色谱.质谱法(GC-MS)测定市售牛奶中4种酞酸酯(邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁基酯(DiBP)、邻苯二甲酸二丁基酯(DBP),邻苯二甲酸二(2-乙基己基)酯(DEHP))的方法.样品采用乙酸乙酯直接萃取,C18小柱净化,过0.45μm滤膜,直接注入GC-Ms进行分析.保留时间定性,外标法定量.4种酞酸酯的回收率为77.9%~109.07%;精密度(RSD)为1.72%~6.18%;检测限在0.15~60 ng之间.  相似文献   

9.
固相萃取-反相高效液相色谱法测定水中的邻苯二甲酸酯   总被引:4,自引:0,他引:4  
建立了固相萃取-反相高效液相色谱法检测水中3种邻苯二甲酸酯类物质邻苯二甲酸二甲酯、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸二正辛酯的方法. 考察了固相萃取柱、洗脱溶剂、洗脱体积、上样速度以及洗脱速度对萃取效率的影响. 通过综合分析, 选定SupelcleanLC-18 SPE Tube固相萃取柱, 甲醇为洗脱剂, 洗脱体积2 mL, 上样速度为4 mL/min, 洗脱速度为1 mL/min. 在此萃取条件下, 萃取回收率在83.4%~121.2%之间. 邻苯二甲酸二甲酯、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸二正辛酯质量浓度在2~100 mg/L之间均为线性. 经萃取后, 方法的最低检出限分别为邻苯二甲酸二甲酯0.06 μg/L, 邻苯二甲酸二(2-乙基己基)酯0.16 μg/L, 邻苯二甲酸二正辛酯0.08 μg/L. 方法的精密度在10%~15%之间. 应用该方法测定自来水中酞酸酯类化合物的含量, 加标回收率为83.6%~110.2%.  相似文献   

10.
采用高效液相色谱-串联质谱(HPLC-MS/MS)法对珠三角地区人群血浆中16种邻苯二甲酸酯(PAEs)的暴露情况进行分析。样品预处理采用乙腈沉淀蛋白,正己烷液液萃取。结果表明,血浆中检出邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二异丁酯(DiBP)、邻苯二甲酸二正丁酯(DnBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二环己基酯(DCHP)与邻苯二甲酸二(2-乙基己基)酯(DEHP)。其中DEHP的检出率为100%;其次为DiBP、DnBP与DMP,检出率分别为98.0%、62.0%和49.0%;DCHP与BBP的检出率最低,均为5.00%。∑PAEs的含量为12.4~1 399 ng/g,中值与平均值分别为39.8、57.7 ng/g。6种PAEs中DEHP占比最高,为90.01%~99.96%。对不同性别与年龄人群的PAEs暴露水平进行研究,发现女性与低年龄组(≤40岁)人群血浆中的PAEs浓度较高,但仅DMP存在显著性差异。  相似文献   

11.
A solid-phase microextraction method (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) has been developed for the determination of the six phthalate esters included in the US Environmental Protection Agency (EPA) Priority Pollutants list in water samples. These compounds are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP). Detailed discussion of the different parameters, which could affect the extraction process, is presented. Main factors have been studied and optimized by means of a multifactor categorical design. Different commercial fibers, polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), polyacrylate (PA), Carboxen-polydimethylsiloxane (CAR-PDMS) and Carbowax-divinylbenzene (CW-DVB), have been investigated, as well as the extraction mode, exposing the fiber directly into the sample (DSPME) or into the headspace over the sample (HS-SPME), and different extraction temperatures. The use of this experimental design allowed for the evaluation of interactions between factors. Extraction kinetics has also been studied. The optimized microextraction method showed linear response and good precision for all target analytes. Detection limits were estimated considering the contamination problems associated to phthalate analysis. They were in the low pg mL(-1), excluding DEHP (100 pg mL(-1)). The applicability of the developed SPME method was demonstrated for several real water samples including mineral, river, industrial port and sewage water samples. All the target analytes were found in real samples. Levels of DEP and DEHP were over 1 ng mL(-1) in some of the samples.  相似文献   

12.
This paper demonstrates, for the first time, that adsorptive potential of bamboo charcoal for solid-phase extraction of phthalate esters was investigated. The four phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP) and di-n-butyl phthalate (DBP), are quantitatively adsorbed on a bamboo charcoal packed cartridge, then the analytes retained on the cartridge are quantitatively desorbed with optimum amounts of acetone. Finally, the analytes in the eluant acetone are determined by high-performance liquid chromatography-ultraviolet detectior. Important parameters influencing the extraction efficiency, such as eluant and its volume, flow rate of sample, sample volume, pH, the amount of adsorbent and ionic strength were investigated and optimized in detail. Under the optimum conditions, the limits of detection were 0.35-0.43 microg/L for four phthalate esters. The proposed method has been applied to the analysis of rainwater and tap water samples. And satisfactory spiked recoveries were obtained in the range of 75.0-114.2%. All the results indicated that the bamboo charcoal has great potential as a novel adsorbent material for the enrichment and determination of phthalate esters in real environmental water samples.  相似文献   

13.
A simple and economic method for the analysis of phthalate esters, dimethyl phthalate, diethyl phthalate, di-iso-butyl phthalate, di-n-butyl phthalate, and di-2-ethylhexyl phthalate in cow milk samples by means of gas chromatography-flame ionization detection and gas chromatography-mass spectrometry has been developed. In this work, NaCl and ACN were added to 5 mL of the milk sample as the salting out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of NaCl, a two-phase system was formed: upper phase - acetonitrile containing phthalate esters -and lower phase - aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of phthalate esters from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with 1,2-dibromoethane at microliter level and injected by syringe into NaCl solution. After the extraction of the selected phthalate esters into 1,2-dibromoethane, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Under the optimum extraction conditions, low limits of detection and quantification between 1.5-3 and 2.5-11 ng/mL, respectively was observed. Enrichment factors were in the range of 397-499. The relative standard deviations for the extraction of 100 ng/mL of each phthalate ester were in the range of 3-4% (n = 6). Finally, some milk samples were successfully analyzed using the proposed method and two analytes, di-n-butyl phthalate and di-2-ethylhyxel phthalate, were determined in them in nanogram per milliliter level.  相似文献   

14.
韦俊芳  姜磊  楼超艳  朱岩 《色谱》2018,36(7):678-684
建立了同时快速测定运动饮料中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丙酯、邻苯二甲酸二丁酯、邻苯二甲酸二戊酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸二辛酯8种邻苯二甲酸酯(PAEs)类增塑剂的超临界流体色谱-紫外检测分析方法。实际样品经液相萃取后,用超临界流体色谱分析,以超临界态二氧化碳-3%(体积分数)甲醇作为色谱流动相进行等度洗脱,检测波长为225 nm,6 min即可实现分离。8种PAE类增塑剂在0.05~25 mg/L范围内均具有良好的线性关系,相关系数为0.9991~0.9997,方法检出限为7.5~15 μg/L。8种PAE类增塑剂在运动饮料样品中的加标回收率为91.7%~100.2%,相对标准偏差均不大于6.5%(n=3)。应用该方法对多种市售运动饮料中的8种PAE类增塑剂进行检测,结果表明,该方法环保、快速、灵敏、选择性高、结果准确,能满足运动饮料中增塑剂含量检测的要求。  相似文献   

15.
A novel polystyrene/pyridine composite nanofiber was synthesized and utilized as the sorbent material for the solid‐phase extraction of bisphenol A and five common phthalate esters in milk. The method of extraction integrated extraction and preconcentration of target analytes into a single step. Bisphenol A and five common phthalate esters were selected as target compounds for the development and evaluation of the method. The effects of operating parameters for nanofiber‐based solid‐phase extraction, such as selection and amount of sorbent, the volume fraction of perchlorate (precipitate protein), desorption solvent, volume of desorption solvent, and effect of salt addition were optimized. Under optimal conditions, higher extraction recoveries (89.6–118.0%) of the six compounds in milk spiked at three levels were obtained, and the satisfied relative standard deviation were ranged from 0.6 to 10.9%. The detection limits and quantification limits of the method ranged from 0.01 to 0.06 μg/L and 0.05 to 0.53 μg/L, respectively. Matrix effects were also verified and well controlled in the range of 91.3–109.3%. The new method gave better performance metrics than Chinese standard method and other published methods. Thus, the proposed method may be applied to the analysis of the phthalate esters and bisphenol A in complex matrixes.  相似文献   

16.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

17.
《Analytical letters》2012,45(8):1355-1366
A rapid and efficient sample preparation method, which is called microwave-assisted microsolid phase extraction, was developed for the determination of endocrine disrupting chemicals in atmospheric particulate matter. The endocrine disrupting chemicals included bisphenol A, diethyl phthalate, dibutyl phthalate, and di(2-ethylhexyl) phthalate. The endocrine disrupting chemicals were isolated by microwave-assisted extraction following adsorption by copper(II) isonicotinate using microsolid phase extraction. The endocrine disrupting chemicals were subsequently determined by high performance liquid chromatography with an ultraviolet detector. The extraction was optimized for temperature, time, desorption time, and desorption solvent. Limits of detection (in the range of 2.0–8.5 nanograms per liter), limits of quantification (in the range of 6.6–28.0 nanograms per liter), and repeatability of the procedure (less than 10 percent) were established. Diethyl phthalate, diethyl phthalate, and di(2-ethylhexyl) phthalate were determined at values from 0.57 to 68.8 nanograms per cubic meter in atmospheric particulate matter collected from an urban area, a business center, and an industrial site in Dongguan, China. The concentration of bisphenol A was below the detection limit in these samples.  相似文献   

18.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

19.
Pei Liang  Qian Li  Jing Xu  Dan Du 《Chromatographia》2008,68(5-6):393-397
A novel method, continuous-flow microextraction (CFME) combined with liquid chromatography (LC) with variable-wavelength detector (VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. Experimental parameters including extraction solvent, solvent drop volume, flow rate of sample solution, extraction time and ionic strength, which affected the extraction efficiency, were studied and optimized. Under the optimum extraction conditions, the method yields a linear calibration curve in the concentration range of 10–10,000 ng mL?1 for target analytes. The enrichment factors of this method for DMP, DEP and DnBP reached at 27, 44 and 20, respectively, and the detection limits were 2, 1 and 5 ng mL?1, respectively. Good repeatability of extraction was obtained with relative standard deviations below 8.6%. The results demonstrated that CFME followed by LC-VWD is a simple and reliable technique for the determination of phthalate esters in water samples.  相似文献   

20.
A rapid extraction and cleanup method using selective fabric phase sorptive extraction combined with gas chromatography and mass spectrometry has been developed and validated for the determination of broad polarity spectrum emerging pollutants, ethyl paraben, butyl paraben, diethyl phthalate, dibutyl phthalate, lidocaine, prilocaine, triclosan, and bisphenol A in various aqueous samples. Some important parameters of fabric phase sorptive extraction such as extraction time, matrix pH, stirring speed, type and volume of desorption solvent were investigated and optimized. Calibration curves were obtained in the concentration range 0.05–500 ng/mL. Under the optimum conditions, the limits of detection were in the range 0.009 –0.021 ng/mL. This method was validated by analyzing the compounds in spiked aqueous samples at different levels with recoveries of 93 to 99% and relative standard deviations of <6%. The developed method was applied for the determination of the emerging contaminants in tap water, municipal water, ground water, sewage water, and sludge water samples. The results demonstrate that fabric phase sorptive extraction has great potential in the preconcentration of trace analytes in complex matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号