首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A series of copoly(aryl ether sulfone)s containing double‐decker‐shaped silsesquioxane (DDSQ) in the main chain was prepared. Toward this end, a novel diphenol polyhedral oligomeric silsesquioxane macromer was synthesized by hydrosilylation between 3,13‐dihydro octaphenyl double‐decker silsesquioxane (denoted dihydro DDSQ) and eugenol. The poly(aryl ether sulfone)s were synthesized from diphenol DDSQ, bisphenol A (BPA), and 4‐fluorophenyl sulfone using a one‐step high‐temperature solution method. By adjusting the ratio of diphenol DDSQ to BPA, copolymers with variable DDSQ content in the main chains were obtained. With increased DDSQ content in the main chain, the glass transition temperature decreased based on differential scanning calorimetry, and anti‐degradation was enhanced based on thermogravimetric analysis. Moreover, the dielectric constant κ of pure polymer (3.19 at 1 MHz) initially increased to 4.04 (DDSQ molar ratio = 10%), and then decreased to 2.68 at 1 MHz (DDSQ molar ratio = 100%). Crystallization behavior, solubility, and surface hydrophobicity were also investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 780–788  相似文献   

2.
An organic–inorganic copolymer with polyhedral oligomeric silsesquioxane (POSS) and xanthate moieties in the main chain was synthesized via the polycondensation between 3,13‐di(2‐bromopropionate)propyl double‐decker silsesquioxane (DDSQ) and 1,4‐di(xanthate potassium)butane. This hybrid copolymer was used as the macromolecular chain transfer agent to obtain the organic–inorganic poly(N‐vinylpyrrolidone) (PVPy) copolymers via a reversible addition fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerization approach; the polymerization behavior of N‐vinyl pyrrolidone was investigated by means of gel permeation chromatography. It was found that the polymerization was in a living and controlled manner. Transmission electron microscopy (TEM) showed that the organic–inorganic PVPy copolymers with DDSQ in the main chains were microphase‐separated in bulks. Compared to plain PVPy, the organic–inorganic PVPy copolymers displayed the decreased glass transition temperatures (Tgs); the decreased Tgs are attributable to the effect of the introduced DDSQ cages on the packing of PVPy chains as evidenced by means of Fourier transform infrared spectroscopy (FTIR). In water, the organic–inorganic PVPy copolymers can self‐assemble into the spherical nano‐objects with the size of 20–50 nm in diameter. In the self‐assembled nano‐objects, the aggregates of the hydrophobic DDSQ constituted the cores of the polymeric micelles whereas the PVPy chains between the DDSQ behaved as the coronas of the polymeric micelles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2949–2961  相似文献   

3.
A series of novel organic–inorganic copolymers with polyhedral oligomeric silsesquioxane (POSS) in the main chains were synthesized via the copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition polymerization approach. Toward this end, we synthesized 3,13‐azidopropyloctaphenyl double‐decked silsesquioxane (DDSQ). This difunctional POSS macromer was used to copolymerize with α,ω‐dialkynyl‐terminated oligoethylenes with variable number of ethylene units. The organic–inorganic copolymers were obtained with the mass fraction of POSS up to 79%. Gel permeation chromatography showed that the high‐molecular‐weight copolymers were successfully obtained in all the cases. Differential scanning calorimetry showed that the amplitude of glass transitions for these copolymers was very feeble, suggesting that the segmental motions responsible for the glass transitions was highly restricted with DDSQ cages in the main chains. Thermogravimetric analysis showed that the organic–inorganic hybrid copolymers displayed extremely high thermal stability. Contact angle measurements showed that these organic–inorganic copolymers are highly hydrophobic and possessed very low surface energy. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4221–4232  相似文献   

4.
The new poly(arylene vinylene) derivatives, which are composed of biphenylene vinylene phenylene vinylene, biphenylene vinylene m‐phenylene vinylene, terphenylene vinylene phenylene vinylene, and terphenylene vinylene m‐phenylene vinylene as backbone and bulky fluorene pendants at each vinyl bridge, were designed, synthesized, and characterized. The obtained polymers showed weight‐average molecular weights of 11,100–39,800 with polydispersity indexes ranging from 1.5 to 2.1. The resulting polymers were amorphous with high thermal stability and readily soluble in common organic solvents. The obtained polymers showed blue emission (λmax = 456–475 nm) in PL spectra, and polymer 4 containing terphenylene vinylene m‐phenylene vinylene showed the most blue shifted blue emission (λmax = 456 nm). The double layer light‐emitting diode devices fabricated by using obtained polymers as emitter emitted bright blue light. The device showed turn on voltage around 6.5 V and brightness of 70–250 cd/m2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4923–4931, 2006  相似文献   

5.
This article describes the synthesis and properties of the first poly(arylene‐vinylene)‐based sensitizers for application in dye‐sensitized solar cells (DSSC). The polymers were prepared by the Suzuki–Heck copolymerization of potassium vinyltrifluoroborate (PVTB) with a mixture of dibromoaryl comonomers designed to obtain macromolecules able to bind onto the photoelectrode by means of carboxyphenylene units. The copolymerization reactions were carried out in the presence of an excess of PVTB to lower the molecular weights of the polymers, which were obtained as soluble materials. The polymers poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene] ( P1 ), poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐(4,7‐benzothiadiazolylene)‐vinylene] ( P2 ), and poly[(9,9‐didodecyl‐2,7‐fluorenylene)‐vinylene‐co‐(carboxy‐2,5‐phenylene)‐vinylene‐co‐2,5‐thienylene‐vinylene] ( P3 ) were used in DSSC devices, obtaining conversion efficiencies up to 0.88% ( P3 ). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

7.
The novel trans‐stereo‐regular silylene–thiophene derivatives ( 4 , 5 ) with perfect consecutive silylene–arylene–silylene–vinylene linkage were synthesized via silylative coupling polycondensation of 2,5‐bis(vinyldimethylsilyl)thiophene ( 2 ) or 5,5′‐bis(vinyldimethylsilyl)‐2,2′‐bithiophene ( 3 ) catalyzed by ruthenium‐hydride complex [RuHCl(CO)(PCy3)2] ( 1 ). Their spectroscopic, absorption, and luminescence properties were characterized and compared with those of model compounds containing thiophene or bithiophene chromophores. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 127–137, 2008  相似文献   

8.
A series of light‐emitting poly(p‐phenylene vinylene)s with triphenylamine units as hole‐transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass‐transition temperature (83–155 °C) and high decomposition temperature (>300 °C) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight‐average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminescence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6–0.75 V) suggested that the alternating copolymers possessed a good hole‐transporting property due to the incorporation of triphenylamine moieties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3278–3286, 2001  相似文献   

9.
A new poly(arylene vinylene) derivative, poly(1,4‐fluorenylenevinylene), with the advantages of poly(p‐phenylene vinylene) and polyfluorene (PF), was designed, synthesized, and characterized. The polymer showed a defect‐free structure and a number‐average molecular weight of 32,600. The resulting polymer was thermally stable with a high glass‐transition temperature (200 °C) and was readily soluble in common organic solvents. The polymer film showed a maximum emission at 515 nm and had a photoluminescence quantum yield of 58 ± 5%. A cyclic voltammetry study revealed that the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of the polymer were 2.9 and 5.51 eV, respectively. The double‐layer light‐emitting‐diode devices fabricated from the polymer emitted bright green light with a maximum around 515 nm. The device showed a maximum luminous efficiency of 0.13 cd/A and a maximum luminance value of 600 cd/m2 at 17 V. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6515–6523, 2005  相似文献   

10.
Segmented disulfonated poly(arylene ether sulfone)‐b‐polyimide copolymers based on hydrophilic and hydrophobic oligomers were synthesized and evaluated for use as proton exchange membranes (PEMs). Amine terminated sulfonated poly (arylene ether sulfone) hydrophilic oligomers and anhydride terminated naphthalene based polyimide hydrophobic oligomers were synthesized via step growth polymerization including high temperature one‐pot imidization. Synthesis of the multiblock copolymers was achieved by an imidization coupling reaction of hydrophilic and hydrophobic oligomers oligomers in a m‐cresol/NMP mixed solvent system, producing high molecular weight tough and ductile membranes. Proton conductivities and water uptake increased with increasing ion exchange capacities (IECs) of the copolymers as expected. The morphologies of the multiblock copolymers were investigated by tapping mode atomic force microscopy (TM‐AFM) and their measurements revealed that the multiblock copolymers had well‐defined nano‐phase separated morphologies which were clearly a function of block lengths. Hydrolytic stability test at 80 °C water for 1000 h showed that multiblock copolymer membranes retained intrinsic viscosities of about 80% of the original values and maintained flexibility which was much improved over polyimide random copolymers. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties will be provided in a separate article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4879–4890, 2007  相似文献   

11.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

12.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

13.
In this contribution, we reported an investigation of the morphologies, surface hydrophobicity, and shape memory properties of the organic–inorganic polyurethanes with double decker silsesquioxane (DDSQ) in the main chains. It was found that the organic–inorganic polyurethanes were microphase‐separated and that the POSS cages in the main chains were self‐organized into the spherical microdomains with the size of 10–50 nm in diameter. The introduction of POSS cages into the main chains resulted in the enhancement of glass transition temperatures (Tg's). In the meantime, the surface dewettability of the materials was significantly enhanced. X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) indicates the improvement of the surface hydrophobicity resulted from the enrichment of POSS at the surfaces of the polyurethanes. The mechanical analyses, such as dynamic mechanical analysis (DMA) and creep‐recovery analysis (CRA), indicate that the POSS microdomains dispersed in the polyurethanes behaved as the physical crosslinking sites and promoted the formation of the crosslinked networks. Owing to the introduction of DDSQ into the main chains, the organic–inorganic polyurethanes significantly displayed shape memory properties, in marked contrast to the unmodified and linear polyurethane. The shape memory behavior has been addressed on the formation of the strong physically crosslinked networks in the organic–inorganic polyurethanes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 893–906  相似文献   

14.
Novel polyhedral structures were prepared with a butterfly‐shape composed of oligosiloxane wings and a double‐decker silsesquioxane (DDSQ) body. The compounds were synthesized in two steps from commercially available alkoxysilanes, and their structures were confirmed using spectroscopic methods and X‐ray crystallography. Not like other phenyl‐substituted cage silsesquioxanes, these butterfly cages show very good solubility in common organic solvents. The crystal structures clearly showed their unique features: a larger space with longer siloxane chains and a very flexible framework. Moreover, these compounds are thermally stable with a Td5 (5 % weight loss temperature) over 320 °C.  相似文献   

15.
Four conjugated polymers ( P1 – P4 ) consisting of alternating anthracene‐9,10‐diyl and 1,4‐phenylene building blocks connected via ethynylene as well as vinylene ( P1 and P2 ), ethynylene‐only ( P3 ), and vinylene‐only ( P4 ) moieties, respectively, were synthesized and studied. The phenylene units in all four polymers bear 2‐ethylhexyloxy side‐chains to promote good solubility. The three polymers with vinylene units ( P1 , P2 , and P4 ) were prepared using the Horner–Wadsworth–Emmons reaction. For the synthesis of the arylene‐ethynylene polymer P3, the palladium‐catalyzed Sonogashira cross‐coupling reaction was used. The polymers were characterized by NMR, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photophysical, absorption and photoluminescence, and electrochemical properties were studied. Spectroscopic ellipsometry measurements were performed to gain more insight on the optical properties. In addition, the transport properties were investigated using admittance spectroscopy. The bulk hole mobility and its dependence on the electric field were evaluated for P1 and P2 . © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 129–143  相似文献   

16.
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005  相似文献   

17.
Poly(vinylene arsine)s with no aromatic substituent ([? CH?CR? AsMe? ]n) were prepared through a radical alternating copolymerization of acetylenic compounds having an alkyl substituent with an organoarsenic homocycle as an arsenic‐atomic biradical equivalent. The radical reaction between 1‐octyne and pentamethylcyclopentaarsine, with a catalytic amount of 2,2′‐azobisisobutyronitrile without a solvent (60 °C, 10 h), produced the corresponding poly(vinylene arsine)s (45% yield). The copolymers obtained were soluble in tetrahydrofuran, chloroform, hexane, and so on. The copolymers were characterized with 1H and 13C NMR spectra. The number‐average molecular weights of the copolymers were estimated with gel permeation chromatography (chloroform and polystyrene standards) to be 6500. The copolymers showed an emission property attributable to the n–π* transition in the main chain. Irradiation by an incandescent lamp of a mixture of 1‐octyne and 1 also produced poly(vinylene arsine)s. The conversion rate of 1‐octyne during the copolymerization with 2,2′‐azobisisobutyronitrile was measured with gas chromatography analysis and was found to be much slower than that of phenylacetylene. A radical terpolymerization of cyclo‐(AsMe)5 with 1‐octyne and styrene was carried out to yield the terpolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3604–3611, 2004  相似文献   

18.
Four different types of conjugated copolymers, consisting of alternating structures of phenothiazinylene vinylene and phenylene vinylene derivatives such as phenylene vinylene, 1,1′‐biphenyl‐4,4′‐ylene vinylene, 2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene, and 9,10‐anthrylene vinylene, were prepared by Horner–Emmons condensation between appropriate diphosphonates and dialdehydes. Single‐layer and double‐layer light‐emitting diodes were fabricated with the synthesized conjugated polymers, and their electroluminescent properties were investigated. Poly(N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐9,10‐anthrylene vinylene), containing phenothiazinylene vinylene and anthrylene vinylene as repeat units, emitted a reddish‐orange color with Commission Internationale de l'Eclairage coordinates of x = 0.6173 and y = 0.3814 that was very similar to the National Television System Committee standard red, and it showed a bipolar carrier‐injection/transporting capability caused by electron‐withdrawing anthracene and electron‐donating amino groups. Poly[N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene], containing phenothiazinylene vinylene and dialkoxy phenylene vinylene moieties, showed excellent hole‐injection/transporting capability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2502–2511, 2003  相似文献   

19.
In order to investigate the effect of polyhedral oligomeric silsesquioxane content and the structure‐function related on the dielectric property and hydrophobicity, three kinds of poly(aryl ether sulfone)s (PAESs) random terpolymer with different chemistry structure at variable polyhedral oligomeric silsesquioxane content in the main chain are prepared. The structures of PAESs are characterized by infrared (IR), nuclear magnetic resonance (NMR), and wide‐angle X‐ray diffraction (WXRD) spectra. The results show that the dielectric constant initially increases then decrease to 2.68 at 100%‐double‐decker silsesquioxane (DDSQ)‐PAES(molar content of DDSQ = 100%) at 1 MHz. The contact angle increased to 97.5° at 100%‐DDSQ‐PAES. While the chemical structure of organic chains also plays an important role on thermostability, dielectric, and hydrophobic properties. The results are discussed and interpreted in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Poly(3,6‐silafluorene) is a typical wide band‐gap conjugated polymer with ultraviolet light emission. The blue electroluminescence from the 3,6‐silafluorene‐based copolymers via intrachain energy transfer was reported in this study. The monomer containing vinylene, anthracene, and tri‐arylamine moieties incorporated into the poly(3,6‐silafluorene) backbone can form efficient deep‐blue emitting copolymers with EL efficiency of 1.1–1.9%. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3286–3295, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号