首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure, heats of formation, energetic properties, strain energy and thermal stability for a series of substituted difurazano[3,4-b:3′,4′-e]piperazines and their analogues were studied using density functional theory. The results show that it is a useful way to increase the heat of formation values of energetic compounds by incorporating a five- or six-membered aromatic heterocycle to construct a fused ring system. The calculated detonation properties reveal that introducing one heterocycle to construct a fused ring structure greatly enhances their detonation properties. The substitution of the –NF2, –NO2 or –NHNO2 group is very useful for enhancing the detonation performance for the substituted derivatives. According to molecular structure and natural bond orbital analysis, the introduction of the –NO2, –NF2 or –NHNO2 group decreases the stability of the substituted derivative. There is a weak N–NO2 bond conjugation in the NO2-substituted derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that all the unsubstituted derivatives have good thermal stability, but the substitution of –NO2 or –NF2 remarkably decreases their stability. Considering the detonation performance and thermal stability, eight compounds may be considered as the potential candidates of high-energy density materials with less sensitivity.  相似文献   

2.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of 1,2,3,4-tetrazine-1,3-dioxide derivatives with different substituents and bridge groups. It is found that the groups –NO2, –C(NO2)3, and –N=N– play a very important role in increasing the HOFs of the derivatives. The effects of the substituents on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels and HOMO–LUMO gaps are coupled to those of different substituents and bridges. The calculated detonation velocities and pressures indicate that the group –NO2, –NF2, –ONO2, –C(NO2)3, or –NH– is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds indicates that incorporating the groups –NO2, –NF2, –ONO2, –C(NO2)3, and –N=N– into parent ring decreases their thermal stability. Considering the detonation performance and thermal stability, 18 compounds may be considered as the target compounds holding the greatest potential for synthesis and use as high-energy density compounds. Among them, the oxygen balances of four compounds are equal to zero. These results provide basic information for the molecular design of the novel high-energy compounds.  相似文献   

3.
In this work, the experimental synthesized bipyridines azo-bis(2-pyridine),4,4′-dimethyl-3,3′-dinitro-2,2′-azobipyridine, and N,N′-bis(3-nitro-2-pyridinyl)-methane-diamine and a set of designed bipyridines that have similar frameworks but different linkages and substituents were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions, and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing and results show that incorporation of –N=N–, –N=N(O)–, –CH=N–, and –NH–NH– into bipyridines is more favorable than –CH=CH– and –NH–CH2–NH– for increasing the density. The predicted detonation velocities (D) and detonation pressures (P) indicate that –NH2, –NO2, and –NF2 can enhance the detonation performance, and –NO2 and –NF2 are more favorable. Introducing –N=N–, –N=N(O)–, and –NH–NH– bridge groups into bipyridines is also favorable for improving their detonation performance. The oxidation of pyridine N always but that of –N=N– bridge does not always improve the detonation properties. E4–O, the derivative with –N=N– bridge and two –NF2 substituent groups, has the largest D (9.90 km/s) and P (47.47 GPa). An analysis of the bond dissociation energies shows that all derivatives have good thermal stability.  相似文献   

4.
A new family of asymmetric oxadiazole based energetic compounds were designed. Their electronic structures, heats of formation, detonation properties and stabilities were investigated by density functional theory. The results show that all the designed compounds have high positive heats of formation ranging from 115.4 to 2122.2 kJ mol−1. −N− bridge/−N3 groups played an important role in improving heats of formation while −O− bridge/−NF2 group made more contributions to the densities of the designed compounds. Detonation properties show that some compounds have equal or higher detonation velocities than RDX, while some other have higher detonation pressures than RDX. All the designed compounds have better impact sensitivities than those of RDX and HMX and meet the criterion of thermal stability. Finally, some of the compounds were screened as the candidates of high energy density compounds with superior detonation properties and stabilities to that of HMX and their electronic properties were investigated.  相似文献   

5.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and thermal stability for a series of bridged ditetrazole derivatives with different linkages and substituent groups. The results show that the ? N3 group and azo bridge (? N?N? ) play a very important role in increasing the HOF values of the ditetrazole derivatives. The effects of the substituents on the HOMO–LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the ? NO2, ? NF2, ? N?N? , or ? N(O)?N? group is an effective structural unit for enhancing the detonation performance for the derivatives. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N? N bond in the ring or outside the ring is the weakest one and the N? N cleavage is possible to happen in thermal decomposition. Overall, the ? CH2? CH2? or ? NH? NH? group is an effective bridge for enhancing the thermal stability of the bridged ditetrazoles. Because of their desirable detonation performance and thermal stability, five compounds may be considered as the potential candidates of high‐energy density materials (HEDMs). These results provide basic information for the molecular design of novel HEDMs. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

6.
The molecular structures, infrared spectra, heats of formation (HOFs), detonation properties, chemical and thermal stabilities of several tetrahydro-[1,4]dioxino[2,3-d:5,6-d'] diimidazole derivatives with different substituents were studied using DFT-B3LYP method. The properties of the compounds with different groups such as -NO2, -NH2, -N3, and -ONO2 were further compared. The -NO2 and -ONO2 groups are effective substituents for increasing the densities of the compounds, while the substitution of -N3 group can produce the largest HOF. The compound with -NO2 group has the same detonation properties as 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, while the compound with -ONO2 group has lower detonation properties than those of hexahydro-1,3,5-trinitro-1,3,5-triazine. The nature bond orbital analysis reveals that the relatively weak bonds in the molecules are the bonds between substituent groups and the molecular skeletons as well as C-O bonds in the dioxin rings. The electron withdrawing groups (-NO2, -N3, and -ONO2) have inductive effects on the linkages between the groups and molecular skeletons. In addition, researches show that the electronegativities of the groups are related with the stabilities of the compounds. Considering detonation performance and thermal stability, the 1,5-dinitro-2,6-bis(trinitromethyl)-3a,4a,7a,8a-tetrahydro-[1,4]dioxino-[2,3-d:5,6-d'] diimidazole satisfies the requirements of high energy density materials.  相似文献   

7.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

8.
Density functional theory has been used to investigate geometries, heats of formation (HOFs), C-NO2 bond dissociation energies (BDEs), and relative energetic properties of nitro derivatives of azole substituted furan. HOFs for a series of molecules were calculated by using density functional theory (DFT) and Møller–Plesset (MP2) methods. The density is predicted using crystal packing calculations; all the designed compounds show density above 1.71 g/cm3. The calculated detonation velocities and detonation pressures indicate that the nitro group is very helpful for enhancing the detonation performance for the designed compounds. Thermal stabilities have been evaluated from the bond dissociation energies. Charge on the nitro group was used to assess the impact sensitivity in this study. According to the results of the calculations, tri- and tetra-nitro substituted derivatives reveal high performance with better thermal stability.  相似文献   

9.
The heats of formation (HOFs) for a series of monofurazan derivatives were calculated by using density functional theory. It is found that the ? CN or ? N3 group plays a very important role in increasing the HOF values of the furazan derivatives. The detonation velocities and detonation pressures of the furazan derivatives are evaluated at two different levels. The results show that the ? NF2 group is very helpful for enhancing the detonation performance for the furazan derivatives, but the case is quite the contrary for the ? CH3 group. An analysis of the bond dissociation energies and bond orders for the weakest bonds indicate that the substitutions of ? CN group are favorable and enhances the thermal stability of the furazan derivatives, but the ? NO2 groups produce opposite effects. These results provide basic information for the molecular design of novel high‐energy density materials. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
A new cage compound, 3, 5, 8, 10, 11, 12-hexanitro-3, 5, 8, 10, 11, 12-hexaazatetracyclo [5.5.1.12,6.04,9] dodecane (HNHATCD, I) as well as its –ONO2 (II) and –N3 (III) derivatives were proposed in the present work. Their molecular structures were optimized at the B3LYP/6-31G(d,p) level of density functional theory. Heat of formation, strain energy, detonation performance, and thermal stability were studied. Results show that the –N3 group greatly increases the heat of formation, but decreases the strain energy and density, and it is much more helpful for enhancing the detonation energy than the –NO2 and –ONO2 groups. An analysis of bond dissociation energies (BDEs) of the weakest bonds implies that the BDE of –N3 derivatives is the smallest but it is still larger than 120 kJ mol?1, revealing that these designed compounds have a high thermal stability. Considering the detonation performance and thermal stability, I and II may be potential candidates of high energy density materials.  相似文献   

11.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and pyrolysis mechanism of a series of trinitromethyl-substituted heterocycle (including triazole, tetrazole, furazan, tetrazine, and fused heterocycles) derivatives. It is found that the fused ring, tetrazine, and tetrazole are effective structural units for increasing the HOFs of the derivatives. The substitution of the combination of nitro and trinitromethyl is very useful for improving their HOFs. The calculated energetic properties indicate that the combination of the nitro and trinitromethyl is very helpful for improving their detonation properties and oxygen balances (OB). Most of the title compounds have a good OB over zero. The OB of six compounds are very high and over 22. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N–O bond in the ring is a trigger bond for BIII-1, CI-3, and CI-4, and the ring–NO2 and (NO2)2C–NO2 bond cleavage is likely to happen in thermal decomposition for the remaining compounds. Considering the detonation performance and thermal stability, seven compounds could be regarded as potential candidates for high-energy compounds. Four compounds may be used as the novel high-energy oxidizers.  相似文献   

12.
Density functional theory calculations at the B3LYP/aug-cc-pVDZ level have been performed to explore the structure, stability, heat of explosion, density, and the performance properties of amino-, methyl-, and nitroimidazoles. N-Nitroimidazoles have shown lower densities compared with those of C-nitroimidazoles. Detonation properties of title compounds were evaluated by using Kamlet–Jacob semi-empirical equations based on the predicted densities and the calculated heats of detonation. It has been found that some compounds with the calculated densities 2.0 g/cm3, detonation velocities over 9.10 km/s and detonation pressures of about 45 GPa (some even over 50 GPa) may be novel potential high energy materials. The higher performance of nitroimidazole-N-oxides is apparently due to their higher densities (2.0–2.515 g/cm3). Heat of explosion, stability, density, and performance properties are related to the number and relative positions of –NO2, –NH2, and –CH3 groups of the imidazole ring. The designed nitroimidazoles satisfy the criteria of high energy materials.  相似文献   

13.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

14.
A new family of energetic caged compounds was designed by introducing -NH- into the CL-20 skeleton and their energetic properties and impact sensitivity were investigated by using density functional theory. The results indicate that favorable substitution positions of the amine groups in the skeleton is helpful for increasing the heats of formation. Most of the seven compounds have high crystal densities above 1.9 g/cm3. Five compounds have the predominant detonation properties over CL-20. The derivatives with one NH2 group have lower impact sensitivity than those with two NH2 groups. Taking the detonation performance and impact sensitivity into consideration, four compounds may be selected as the potential candidates of high energy density compounds.  相似文献   

15.
《Comptes Rendus Chimie》2015,18(12):1270-1276
To develop new energetic materials, the eleven nitroester substitution derivatives of prismane were investigated at the B3LYP/6-311G** level of density functional theory (DFT). The gas phase heats of formation were calculated by isodesmic reactions and the solid-state heats of formation were obtained by the Politzer approach using the heats of sublimation for the designed compounds. The detonation velocities and pressures of all molecules were calculated by Kamlet–Jacobs equations based on molecular density and heat of detonation. The results show that the nitroester group in prismane is helpful for enhancing molecular detonation properties and power index. Among all molecules, 1,2,3,4-tetrnitroesterprismane has excellent detonation properties (detonation pressure = 40.05 GPa, detonation velocity = 9.28 km/s) and large power index value. The molecular stabilities were evaluated by calculating bond dissociation energies and characteristic heights (H50). The results indicate that the bond dissociation energies of all molecules are above 80 kJ/mol, and all molecules have a larger H50 value than hexanitrohexaazaisowurtzitane (CL-20, 12 cm). The obtained structure–property relationships may provide basic information for the molecular design of novel high-energy materials.  相似文献   

16.
A series of new high-energy insensitive compounds were designed based on 1,3,5-trinitro-1,3,5-triazinane (RDX) skeleton through incorporating -N(NO2)-CH2-N(NO2)-, -N(NH2)-, -N(NO2)-, and -O- linkages. Then, their electronic structures, heats of formation, detonation properties, and impact sensitivities were analyzed and predicted using DFT. The types of intermolecular interactions between their bimolecular assemble were analyzed. The thermal decomposition of one compound with excellent performance was studied through ab initio molecular dynamics simulations. All the designed compounds exhibit excellent detonation properties superior to 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and lower impact sensitivity than CL-20. Thus, they may be viewed as promising candidates for high energy density compounds. Overall, our design strategy that the construction of bicyclic or cage compounds based on the RDX framework through incorporating the intermolecular linkages is very beneficial for developing novel energetic compounds with excellent detonation performance and low sensitivity.  相似文献   

17.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

18.
A new family of high‐nitrogen compounds, that is, polyazido‐ and polyamino‐substituted N,N′‐azo‐1,2,4‐triazoles, were synthesized in a safe and convenient manner and fully characterized. The structures of 3,3′,5,5′‐tetra(azido)‐4,4′‐azo‐1,2,4‐triazole ( 15 ) and 3,3′,5,5′‐tetra(amino)‐4,4′‐azo‐1,2,4‐triazole ( 23 ) were also confirmed by X‐ray diffraction. Differential scanning calorimetry (DSC) was performed to determine their thermal stability. Their heats of formation and density, which were calculated by using Gaussian 03, were used to determine the detonation performances of the related compounds (EXPLO 5.05). The heats of formation of the polyazido compounds were also derived by using an additive method. Compound 15 has the highest heat of formation (6933 kJ kg?1) reported so far for energetic compounds and a detonation performance that is comparable to that of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX), while compound 23 has a decomposition temperature of up to 290 °C.  相似文献   

19.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Based on the full-optimized molecular geometric structures at B3LYP/6-31G* and B3P86/6-31G* levels, the densities (ρ), detonation velocities (D), and pressures (P) for a series of 1,2,3-triazole derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the BDEs of the initial scission step are between 53 and 70 kcal/mol, and 4-nitro-1,2,3-triazole is the most reactive compound, while 1-(2′,4′-dinitrophenyl)-5-nitro-1,2,3-triazole is the least reactive compound for 1,2,3-triazole derivatives studied. The condensed phase heats of formation are also calculated for the title compounds. These results would provide basic information for the further studies of HEDCs. The detonation data of 1-(3′,4′-dinitrophenyl)-4-nitro-1,2,3-triazole and 1-(2′,4′-dinitrophenyl)-4-nitro-1,2,3-triazole show that they meet the requirement for HEDCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号