首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red-emissive π-expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three-step strategy involving the preparation of diketopyrrolopyrrole followed by N-arylation and subsequent intramolecular palladium-catalyzed direct arylation. Comprehensive spectroscopic assays combined with first-principles calculations corroborated that both N-arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.  相似文献   

2.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

3.
The electronic absorption and fluorescence spectra of dibenzoylmethanatoboron difluoride (DBMBF2) in a number of polar and nonpolar solvents have been studied; the quantum yields and fluorescence lifetimes have been measured, and the vibrational structure of the spectra has been analyzed. The equilibrium configuration parameters of DBMBF2 in the ground state have been determined by the DFT method. It has been found that there is only one stable conformation of DBMBF2 in the ground state.  相似文献   

4.
New C60 and C70 fullerene dyads formed with 4‐amino‐1,8‐naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge‐transfer naphthalimide chromophore as a light‐absorbing antenna and excited‐singlet‐state sensitizer of fullerenes. The underlying intramolecular singlet–singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (ΦEnT≈1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground‐state aminonaphthalimide was postulated as an additional path.  相似文献   

5.
Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9′,10′:4,5]imidazo[1,2‐f]phenanthridine and imidazo[1,2‐f]phenanthridine skeletons, which mediate excited‐state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five‐membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady‐state and time‐resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited‐state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited‐state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT‐capable compounds originates from their enol excited states.  相似文献   

6.
A library of 2‐aryl‐3‐trifluoromethylnaphthofurans was synthesized with high efficiency from simple naphthols. In this synthesis, the Pummerer‐type annulation of naphthols with 3‐(2,2,2‐trifluoroethylidene)‐2,4‐dithiapentane 2‐oxide was followed by a cross‐coupling of the resulting 2‐methylthio‐3‐trifluoromethylnaphthofurans with a variety of arylzinc reagents. A palladium complex, Pd‐PEPPSI‐IPr, was the most efficient catalyst for the arylation step, which represents the first cross‐coupling of aryl sulfides by using an N‐heterocyclic‐carbene‐ligated palladium complex. This library consists of new π‐expanded molecules, all of which are fluorescent in the solid state as well as in solution. Their photophysical properties, such as absorption and emission, fluorescence quantum yields, and fluorescence lifetimes, were thoroughly investigated. This library was also useful to identify acidochromic molecules.  相似文献   

7.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

8.
This study reported the photophysics of 7‐(diethylamino)coumarin‐3‐carboxylic acid N‐succinimidyl ester (7‐DCCAE) in different neat solvents of varying polarity using steady‐state absorption, fluorescence emission and picosecond time‐resolved spectroscopy. In nonpolar solvents, the dye molecule predominantly exists in nonpolar structure and exhibits very low value of nonradiative decay rate constant (knr), demonstrating the emission takes place from S1‐LE to S0 ground state. The fluorescence quantum yields, lifetime values of 7‐DCCAE in different solvents are rationalized on the basis of intramolecular charge transfer (ICT) followed by twisted intramolecular charge transfer state formation (TICT) as well as specific solute–solvent interactions. Several solvatochromic models (such as Lippert, Dimroth, Kamlet–Taft, Catalán 3P and Catalán 4P models) were used to analyze the solvatochromic shift of 7‐DCCAE in different solvents. The different empirical models show that the observed results are better correlate for nonchlorinated solvents and provide statistically significant best‐fit result. A comparison was done between comparatively new solvatochromic model (Catalán 3P and Catalán 4P model) with Kamlet–Taft model. The ground state structure of the said molecule was optimized by using Density Functional Theory (DFT).  相似文献   

9.
The synthesis, linear photophysical, two‐photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative ( 1 ) are reported. Steady‐state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10?6–10?8) were observed. An open‐aperture Z‐scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited‐state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.  相似文献   

10.
The photophysical properties of a chlorin, isobacteriochlorin and bacteriochlorin built on a core tetrapentafluorophenylporphyrin (TPPF20) and the nonhydrolyzable para thioglycosylated conjugates of these chromophores are presented. The photophysical characterization of these compounds was done in three different solvents to correlate with different environments in cells and tissues. Compared with TPPF20 other dyes have greater absorption in the red region of the visible spectrum and greater fluorescence quantum yields. The excited state lifetimes are from 3 to 11 ns. The radiative and nonradiative rate constants for deactivation of the excited state were estimated from the fluorescence quantum yield and excited state lifetime. The data indicate that the bacteriochlorin has strong absorption bands near 730 nm and efficiently enters the triplet manifold. The isobacteriochlorin has a 40–70% fluorescence quantum yield depending on solvent, so it may be a good fluorescent tag. The isobacteriochlorins also display enhanced two‐photon absorption, thereby allowing the use of 860 nm light to excite the compound. While the two‐photon cross section of 25 GM units is not large, excitation of low chromophore concentrations can induce apoptosis. The glycosylated compounds accumulate in cancer cells and a head and neck squamous carcinoma xenograft tumor model in mice. These compounds are robust to photobleaching.  相似文献   

11.
Bis[anthracenes] are the few among the fluorescing nonconjugated bichromophores that possess photoreactive properties. The 9,9′‐[methylenebis(oxy)]bis[anthracenes] 1 (AOCH2OA) exhibit the highest known intramolecular photocycloaddition quantum yield from the S1 state and, moreover, display a higher yield in polar solvents, an unexpected result for symmetrical systems. No excimer fluorescence was detected in solution at room temperature. The 10,10′‐dimethoxy derivative 1b was studied by picosecond (ps) laser spectroscopy. In nonpolar solvents (methylcyclohexane), Sn←S1 was the only transient absorption detected, whereas, in polar solvents (MeCN), the growth and the decay of a second transient were recorded, and the second transient was attributed to a zwitterion A+.−A−.. The kinetics data were derived, and it was concluded that electron transfer and ion recombination should be at the origin of the observed rate enhancement of cycloadduct formation in polar solvents.  相似文献   

12.
The photophysical properties of two energy‐transfer dyads that are potential candidates for near‐infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads ( FbC‐FbB and ZnC‐FbB ) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2‐dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ~(5–10 ps)?1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Φ f = 0.19) and singlet excited‐state lifetimes (τ~5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited‐state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC‐FbB than for ZnC‐FbB in a given solvent. For example, the Φ f and τ values for FbC‐FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC‐FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge‐transfer states, as assessed by ground‐state redox potentials and supported by molecular‐orbital energies derived from density functional theory calculations. Controlling the extent of excited‐state quenching in polar media will allow the favorable photophysical properties of the chlorin–bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC‐FbB , 110 nm for ZnC‐FbB ) between the red‐region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (λ f = 760 nm), long bacteriochlorin excited‐state lifetime (~5.5 ns), and narrow (≤20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity‐ and lifetime‐imaging techniques.  相似文献   

13.
Experimental results on various photophysical properties of coumarin‐30 (C30) dye, namely, Stokes' shift (Δv), fluorescence quantum yield (τf), fluorescence lifetime (τf), radiative rate constant (kf) and nonradiative rate constant (knr), as obtained using absorption and fluorescence measurements have been reported. Though in most of the solvents the properties of C30 show more or less linear correlation with the solvent polarity function, Δf= [(ε ‐ 1)/(2ε+ 1) ‐ (n2 ‐ 1)/ (2n2+ l)], they show unusual deviations in nonpolar solvents at one end and in high‐polarity protic solvents at the other end. From the solvent polarity and temperature effect on the photophysical properties of the dye, following inferences have been drawn: ( 1 ) in nonpolar solvents, the dye exists in a nonpolar structure, where its 7‐NEt2 substituent adopts a pyramidal configuration and the amino lone pair is out of resonance with the benzopyrone π cloud; ( 2 ) in medium to higher polarity solvents, the dye exists in a polar intra‐molecular charge transfer structure, where the 7‐NEt2 group and the 1,2‐benzopyrone moiety are in the same plane and the amino lone pair is in resonance with the benzopyrone π cloud; ( 3 ) in protic solvents, the dye‐solvent intermolecular hydrogen bonding influences the photophysical properties of the dye; and ( 4 ) in high‐polarity protic solvents, the excited C30 undergoes a new activation‐controlled nonradiative deexcitation process because of the involvement of a twisted intra‐molecular charge transfer (TICT) state. Contrary to most other TICT molecules, the activation barrier for this deexcitation process in C30 is observed to increase with solvent polarity. A rational for this unusual behavior has been given on the basis of the solvent polarity‐dependent stabilization and crossing of relevant electronic states and the relative propensity of interconversion among these states.  相似文献   

14.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   

15.
《化学:亚洲杂志》2017,12(8):936-946
The effective synthesis of extended conjugated N ,N ‐dialkylamino‐nor ‐dihydroxanthene‐based fluorophores is described from diversely functionalized salicylic aldehydes. The access to these original fluorescent derivatives proceeded in two steps through a one‐pot construction of the unusual nor ‐dihydroxanthene (nor ‐DHX) scaffold followed by a diversification step providing a wide variety of nor ‐DHX‐hemicyanine fused dyes emitting in the range of 730–790 nm. The versatility of our approach has enabled a further extension to the late‐stage introduction of negatively/positively charged polar groups onto their terminal nitrogen heterocyclic subunit, thereby giving access to the first water‐soluble and/or bioconjugatable members of this emerging class of NIR fluorophores. Our water‐solubilizing method is easily implementable, and the nor ‐DHX‐hemicyanine skeleton maintains satisfying fluorescence quantum yields (5–20 %) under physiological conditions. Finally, the bioconjugation ability of fluorescent derivatives bearing a free carboxylic acid was demonstrated through the covalent labeling of a model protein, namely, bovine serum albumin.  相似文献   

16.
Phthalocyanine (Pc) and porphyrin (Por) chromophores have been fused through the benzo[α]pyrazine moiety, resulting in unprecedented heteroleptic tetrapyrrole‐fused dimers and trimers. The heteroleptic tetrapyrrole nature has been clearly revealed based on single‐crystal X‐ray diffraction analysis of the zinc dimer. Electrochemical analysis, theoretical calculations, and time‐resolved spectroscopic results disclose that the two/three‐tetrapyrrole‐fused skeletons behave as one totally π‐conjugated system as a result of the strong conjugative interaction between/among the tetrapyrrole chromophores. In particular, the effectively extended π‐electron system through the fused‐bridge induced strong electronic communication between the Pc and Por moieties and large transition dipole moments in the Pc–Por‐fused systems, providing high fluorescence quantum yields (>0.13) and relatively long excited state lifetimes (>1.3 ns) in comparison with their homo‐tetrapyrrole‐fused analogues.  相似文献   

17.
An arginine‐substituted zinc phthalocyanine (ArgZnPc) capable of disaggregating at high concentrations in polar non‐aqueous solvents through concentration‐driven hydrogen bond type transformation has been prepared. The ArgZnPc was prepared through a guanidine‐meditated self‐catalytic ester hydrolysis reaction. The concentration‐driven disaggregation of ArgZnPc was confirmed by UV‐Vis absorption spectra, fluorescence emission spectra and lifetimes, and singlet oxygen quantum yield data.  相似文献   

18.
Two novel helical naphthopyrans have been synthesised. The helical scaffold has the interesting effect of increasing the thermal stability of the transoidtrans (TT) open isomer formed upon UV irradiation of the closed form (CF), which transforms these naphthopyrans from thermal to photochemical photochromes. The photochromic performance is excellent in both polar and apolar solvents and the conversion percentage from the CF to the TT form can be as high as 92.8 %. We propose a new method to determine the quantum yields of the photochemical processes that lead to transoidcis (TC) and TT isomers, and their molar absorption coefficients. The thermal stability of the TT and TC isomers has been studied in different solvents. The quantum yields of fluorescence before and after irradiation, along with the decay lifetimes, have also been measured. TD‐DFT calculations have been performed to determine the relative thermodynamic stability of the species involved in the photochromic mechanism and to rationalise their spectral properties.  相似文献   

19.
A series of novel polyimides based on N,N‐di(4‐aminophenyl)‐1‐aminopyrene and aromatic or alicyclic tetracarboxylic dianhydrides were synthesized. The polymers exhibited good solubility in many polar organic solvents and could afford robust films via solution casting. The polyimides derived from aromatic dianhydrides exhibited high thermal stability and high glass‐transition temperatures (333–364 °C). Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states. For the polyimides derived from alicyclic dianhydrides, they revealed a strong blue‐light emission with high fluorescence quantum yields (?PL > 45%) and a marked solvatochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Peptides of homochiral α‐aminoxy acids of nonpolar side chains can form a 1.88‐helix. In this paper, we report the conformational studies of α‐aminoxy peptides 1 , 2 , 3 , which have functionalized side chains, in both nonpolar and polar solvents. 1H NMR, XRD, and FTIR absorption studies confirm the presence of the eight‐membered‐ring intramolecular hydrogen bonds (the N‐O turns) in nonpolar solvents as well as in methanol. CD studies of peptides 1 , 2 , 3 in different solvents indicate that a substantial degree of helical content is retained in methanol and acidic aqueous buffers. The introduction of functionalized side chains in α‐aminoxy peptides provides opportunities for designing biologically active peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号