首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, classic molecular dynamics (MD) simulations followed by density functional theory (DFT) calculations are employed to calculate the proton transfer reaction enthalpy shifts for native and derivatized peptide ions in the MALDI plume. First, absolute protonation and deprotonation enthalpies are calculated for native peptides (RPPGF and AFLDASR), the corresponding hexyl esters and three common matrices α-cyano-4-hydroxycinnamic acid (4HCCA), 2,5-dihydroxybenzoic acid (DHB), and 6 aza-2-thiothymine (ATT). From the proton exchange reaction calculations, protonation and deprotonation of the neutral peptides are thermodynamically favorable in the gas phase as long as the corresponding protonated/deprotonated matrix ions are present in the plume. Moreover, the gain in proton affinity shown by the ester ions suggests that the increase in ion yield is likely to be related to an easier proton transfer from the matrix to the peptide.  相似文献   

2.
A major problem hampering the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for quantitative measurements is the inhomogeneous distribution of analytes and matrices in solid sample preparations. The use of ionic liquids as matrices for the qualitative and quantitative analysis of low molecular weight compounds like amino acids, sugars and vitamins was investigated. The ionic liquid matrices are composed of equimolar combinations of classical MALDI matrices (sinapinic acid, alpha-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid) with organic bases. These matrix systems allow a homogenous sample preparation with a thin ionic liquid layer having negligible vapour pressure. This leads to a facilitated qualitative and quantitative measurement of the analytes compared with classical solid matrices.  相似文献   

3.
The development of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and its demonstrated performance with large proteins has generated substantial interest in utilizing this technique as an alternative to gel electrophoresis for DNA sequence analysis. However, a lack of understanding of the desorption and ionization processes has greatly hampered advances in this field. This article explores the formation of positively charged oligonucleotides in UV (355-nm) MALDI analysis by using the matrix 2,5-dihydroxybenzoic acid. Whereas substantial fragmentation is observed in the positive-ion mode by using the short oligomer d(TAGGT), no fragmentation is evident in the negative-ion mode under identical conditions. The fragmentation products are consistent with a previously published model in which base protonation initiates base loss, which leads to subsequent cleavage of the phosphodiester backbone. Several polydeoxythymidilic acids containing modified nucleosides were used to investigate positive-ion formation. The results support the hypothesis that positive ions are formed by protonation of the nucleobases. Because base protonation initiates base loss, fragmentation is intrinsic to positive-ion formation in the MALDI analysis of oligonucleotides. This result explains the dramatic difference in fragmentation observed in positive-ion compared to negative-ion UV-MALDI mass spectra of oligonucleotides.  相似文献   

4.
A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.  相似文献   

5.
The use of collision-induced dissociation, postsource decay (CID-PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of small organic molecules is demonstrated. Three pesticides: paraquat, diquat, and difenzoquat were chosen for this study. The matrices 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA), and sinapinic acid (SA) were selected to investigate the effect of the matrix on the CID-PSD MALDI spectra of these molecules. Alpha-CHCA and DHB were found to be appropriate matrices for the pesticides studied. Spectra for a given pesticide obtained from different matrices were compared with each other, and the differences between them are discussed. A comparison of CID-PSD MALDI with fast-atom bombardment MS/MS spectra is presented; the agreement of pesticide fragmentation patterns between the two methods indicates that CID-PSD MALDI MS is a reliable and efficient technique for structural elucidation of small molecules.  相似文献   

6.
Fragmentation of different generations of poly(amidoamine) dendrimers was explored in five common MALDI matrices: 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-3-methoxycinnamic acid (FER), α-cyano-4-hydroxycinnamic acid (ACH), 2,4,6-trihydroxyacetophenone (THAP), and 3-hydroxypicolinic acid (HPA). Of these, DHB was the softest matrix and ACH produced significant fragment intensity already at MALDI threshold, FER and THAP being in between. HPA was not a convenient matrix for dendrimers and produced a specific fragmentation pattern. Fragmentation analysis was mainly concentrated on generation G1, which contains already all essential structural elements. Dendrimers showed complicated fragmentation behavior with multiple fragmentation channels in our MALDI experiments. The relative intensities of these channels depended selectively on choice of the matrix and showed dissimilar dependence on the laser pulse energy. This was attributed to different fragmentation mechanisms, due to different protonation pathways, occurring in the same MALDI plume. The fragmentation pathways were proposed for all observed fragmentation channels. All fragmentation sites of protonated ions were found to be directly attached to the protonation sites and the fragmentation was surplus charge driven in this sense. No charge remote fragmentation channels were detected. Cationized dendrimers showed higher stability than the protonated ions.  相似文献   

7.
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.  相似文献   

8.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is used as an alternative method for the rapid diagnosis of albuminuria. This technique requires no further sample pretreatment than simply mixing the urine sample with a MALDI matrix and drying under ambient conditions. The resulting MALDI mass spectra reveal albumin ions having charges ranging from +1 to +5. The detection of albumin is possible using any of the three most common MALDI matrices - sinapinic acid (SA), 2,5-dihydroxybenzoic acid (2,5-DHB), or 4-hydroxy-alpha-cyanocinnamic acid (alpha-CHC). Using this analytical approach, the limit of detection for albumin in urine is 10(-6) M, approximately 5 to 10 times lower than that detectable through conventional chemical testing.  相似文献   

9.
The specific matrix used in matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can have an effect on the molecules ionized from a tissue sample. The sensitivity for distinct classes of biomolecules can vary when employing different MALDI matrices. Here, we compare the intensities of various lipid subclasses measured by Fourier transform ion cyclotron resonance (FT‐ICR) IMS of murine liver tissue when using 9‐aminoacridine (9AA), 5‐chloro‐2‐mercaptobenzothiazole (CMBT), 1,5‐diaminonaphthalene (DAN), 2,5‐Dihydroxyacetophenone (DHA), and 2,5‐dihydroxybenzoic acid (DHB). Principal component analysis and receiver operating characteristic curve analysis revealed significant matrix effects on the relative signal intensities observed for different lipid subclasses and adducts. Comparison of spectral profiles and quantitative assessment of the number and intensity of species from each lipid subclass showed that each matrix produces unique lipid signals. In positive ion mode, matrix application methods played a role in the MALDI analysis for different cationic species. Comparisons of different methods for the application of DHA showed a significant increase in the intensity of sodiated and potassiated analytes when using an aerosol sprayer. In negative ion mode, lipid profiles generated using DAN were significantly different than all other matrices tested. This difference was found to be driven by modification of phosphatidylcholines during ionization that enables them to be detected in negative ion mode. These modified phosphatidylcholines are isomeric with common phosphatidylethanolamines confounding MALDI IMS analysis when using DAN. These results show an experimental basis of MALDI analyses when analyzing lipids from tissue and allow for more informed selection of MALDI matrices when performing lipid IMS experiments.  相似文献   

10.
Artifact-free, high-resolution matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectra have been obtained for the labile, single-isomer, tert.-butyldimethylsilyl ether derivatives of alpha-, beta- and gamma-cyclodextrins by optimizing the MALDI sample preparation method. 2,5-Dihydroxybenzoic acid, a 3:1 mixture of 2,5-dihydroxybenzoic acid and 1-hydroxyisoquinoline, and 2,4,6-trihydroxyacetophenone were investigated as MALDI matrices with methanol and acetonitrile as matrix solvents. Partial-to-complete loss of the tert.-butyldimethylsilyl groups was observed when the commonly used 2,5-dihydroxybenzoic acid was the MALDI matrix and/or methanol was the solvent, both with and without trifluoroacetic acid as additive. Loss of the labile tert.-butyldimethylsilyl groups was avoided with 2,4,6-trihydroxyacetophenone as MALDI matrix and acetonitrile as matrix solvent. Good ion intensities were achieved for the (M+Na)+ and (M+K)+ quasimolecular ions in the positive-ion mode. Minor byproducts were observed in some of the samples and the information was used to aid the optimization of the synthetic work.  相似文献   

11.
A robust and sensitive sample preparation method is presented for matrix-assisted laser desorption ionization (MALDI) mass spectrometric analysis of low nanomolar concentrations of proteins containing high amounts of common salts and buffers. This method involves the production of densely packed sub-micrometer matrix crystals by depositing a matrix solution on top of a matrix seed-layer prepared on a MALDI target. A sub-microliter aliquot of analyte solution is then directly added to the top of the matrix crystals to form a thin-layer. alpha-Cyano-4-hydroxycinnamic acid (4-HCCA) is used as matrix and demonstrated to give better performance than other commonly used matrices, such as 2,5-dihydroxybenzoic acid (DHB), 2-(4-hydroxy-phenylazo) benzoic acid (HABA), or sinapinic acid. This three-layer method is shown to be superior to the other MALDI sample preparation methods, particularly for handling low nanomolar protein solutions containing salts and buffers.  相似文献   

12.
Two matrices, 4-phenyl-α-eyanocinnamic acid (PCC) and 4-benzyloxy-α-eyanocinnamic acid (BCC), were identified for the determination of polycyclic aromatic hydrocarbon (PAH) adducts of DNA bases by matrix-assisted laser desorption ionization. These matrices were designed based on the concept that the matrix and the analyte should have structural similarities. PCC is a good matrix for the desorption of not only PAH-modified DNA bases, but also PAHs themselves and their metabolites. Detections can be made at the femtomolar level.  相似文献   

13.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A series of seven typical matrix-assisted laser desorption/ionization (MALDI) matrices has been investigated by means of electron capture negative ion mass spectrometry (ECNI-MS). It has been shown that the most effective matrices form deprotonated negative ions predominantly in the low-energy region. Relative dissociative cross sections have been measured for all molecules under investigation. The relative integrated abundance of [M - H](-) ion formation in the series changes by four orders of magnitude. It has been shown that 2,5-DHB (gentisic acid), one of the most effective MALDI matrices, has maximal relative intensity of [M - H](-) formation at the energy approximately equal 0.8 eV. This result is in accordance with a finding of Frankevich and Zenobi [Book of Abstracts, Workshop-school "Mass spectrometry in chemical physics, bio-physics and environmental sciences", Zvenigorod, Russia, April, 25-26, 2002, p. 40] that a probable origin of negative ions in MALDI is the process of low-energy (0.5-1 eV) dissociative electron capture by matrix molecules.  相似文献   

15.
Although matrix-assisted laser desorption/ionization (MALDI) was developed more than a decade ago and broad applications have been successfully demonstrated, detailed mechanism of MALDI is still not well understood. Two major models; namely photochemical ionization (PI) and cluster ionization (CI) mechanisms have been proposed to explain many of experimental results. With the photochemical ionization model, analyte ions are considered to be produced from a protonation or deprotonation process involving an analyte molecule colliding with a matrix ion in the gas phase. With the cluster ionization model, charged particles are desorbed with a strong photoabsorption by matrix molecules. Analyte ions are subsequently produced by desolvation of matrix from cluster ions. Nevertheless, many observations still cannot be explained by these two models. In this work, we consider a pseudo proton transfer process during crystallization as a primary mechanism for producing analyte ions in MALDI. We propose an energy transfer induced disproportionation (ETID) model to explain the observation of an equal amount of positive and negative ions produced in MALDI for large biomolecules. Some experimental results are used for comparisons of various models.  相似文献   

16.
Desorption and ionization efficiencies of matrix-assisted laser desorption/ionization (MALDI) for various biomolecules with different dihydroxybenzoic acid isomers were studied. No clear relationships were observed between MALDI biomolecule signals vs. gas-phase basicity, proton affinity and ionization potential. This indicates the the gas-phase protonation mechanism is not adequate to explain the observed results.  相似文献   

17.
The mechanisms of the reduction of Cu(II) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI) are studied. In MALDI mass spectra, ions cationized by copper mostly contain Cu(I) even if Cu(II) salts are added to the sample. It was found that Cu(II) was reduced to Cu(I) by gas-phase charge exchange with matrix molecules, which is a thermodynamically favorable process. Under some conditions, large amounts of free electrons are present in the plume. Cu(II) can be even more efficiently reduced to Cu(I) by free electron capture in the gas phase. The matrices studied in this work are nicotinic acid, dithranol, and 2,5-dihydroxybenzoic acid.  相似文献   

18.
The Bioaerosol Mass Spectrometry (BAMS) system was developed for the real-time detection and identification of biological aerosols using laser desorption ionization. Greater differentiation of particle types is desired; consequently MALDI techniques are being investigated. The small sample size ( approximately 1 microm3), lack of substrate, and ability to simultaneously monitor both positive and negative ions provide a unique opportunity to gain new insight into the MALDI process. Several parameters known to influence MALDI molecular ion yield and formation are investigated here in the single particle phase. A comparative study of five matrices (2,6-dihydroxyacetophenone, 2,5-dihydroxybenzoic acid, alpha-cyano-4-hydroxycinnamic acid, ferulic acid, and sinapinic acid) with a single analyte (angiotensin I) is presented and reveals effects of matrix selection, matrix-to-analyte molar ratio, and aerosol particle diameter. The strongest analyte ion signal is found at a matrix-to-analyte molar ratio of 100:1. At this ratio, the matrices yielding the least and greatest analyte molecular ion formation are ferulic acid and alpha-cyano-4-hydroxycinnamic acid, respectively. Additionally, a significant positive correlation is found between aerodynamic particle diameter and analyte molecular ion yield for all matrices. SEM imaging of select aerosol particle types reveals interesting surface morphology and structure.  相似文献   

19.
The gas/phase behaviour of N-sulfonylated purine nucleic bases and nucleosides towards electron impact (EI) and matrix-assisted laser desorption/ionization (MALDI) occurring in a ion trap of a Fourier transform ion cyclotron resonance mass spectrometer is investigated. The influence of the storage time on the protonated molecule ([M+H](+)) abundance under EI conditions confirms that the formation of these ions proceeds through ion/molecule reactions. Using stored-waveform inverse Fourier transform (SWIFT) selective isolation of M(+.) or H(3)O(+), self-chemical ionization, M(+.)/M, and chemical ionization, H(3)O(+)/M, are detected. Investigation of specific EI expulsion of SO(2), SO(2)H and/or SO(2)H(2) from M(+.) and/or [M+H](+) shows that oxygen protonation in bond;SO(2)bond; proceeds faster than nitrogen protonation. Expulsion of SO(2) from molecular ions is not observed in MALDI mass spectra of nucleosides.  相似文献   

20.
In a previous study on matrix‐assisted laser desorption ionization (MALDI) of peptides using α‐cyano‐4‐hydroxycinnamic acid (CHCA) as a matrix, we found that the patterns of single‐shot spectra obtained under different experimental conditions became similar upon temperature selection. In this paper, we report that absolute ion abundances are also similar in temperature‐selected MALDI spectra, even when laser fluence is varied. The result that has been obtained using CHCA and 2,5‐dihydroxybenzoic acid as matrices is in disagreement with the hypothesis of laser‐induced ionization of matrix as the mechanism for primary ion formation in MALDI. We also report that the total number of ions in such a spectrum is unaffected by the identity, concentration and number of analytes, i.e. it is the same as that in the spectrum of pure matrix. We propose that the generation of gas‐phase ions in MALDI can be explained in terms of two thermal reactions, i.e. the autoprotolysis of matrix molecules and the matrix‐to‐analyte proton transfer, both of which are in quasi‐equilibrium in the early matrix plume. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号