首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
多壁碳纳米管结构与其电化学容量之间关系的研究   总被引:7,自引:0,他引:7  
采用化学气相沉积法,通过改变催化剂的成分、碳源、反应和后处理条件来制 备不同管径、管长、石墨化程度的多壁碳纳米管。经电化学容量性能测试、透射电 子显微镜观察和N_2吸附等结构表征,发现管径分布为30.0~40.0 nm、管长越短、 石墨化程度越低、比表面积越大、孔容越大的多壁碳纳米管具有更好的电化学容量 。  相似文献   

2.
This review summarizes some developments in the fabrication of modified sensors and biosensors through the incorporating the carbon nanotubes (CNTs) in their modification ingredients. A large number of papers have paid attention towards the application of carbon nanotubes (CNTs) as electrode constituents and studied its electrochemical behavior. Here, we survey the achievements in the detection of various substances with high selectivity and sensitivity provided using CNTs based electrodes. Moreover, modified electrodes by CNTs have demonstrated the electrocatalytic features and higher sensitivity in detection of analytes. The improved characteristics arises from the large surface area and good conductivity of CNTs. However, it should be considered that the use of single walled carbon nanotubes (SWCNTs) or multi‐walled carbon nanotubes (MWCNTs), the presence of impurities, and the chemical procedures adopted are effective on the performance of the modified sensors.  相似文献   

3.
The synthesis of shaped carbon nanomaterials (SCNMs) such as carbon nanotubes (CNTs), amorphous carbon, carbon fibres (CFs) and carbon spheres (CSs) was achieved using para-substituted arylferrocenes, FcPhX (X = H, OH, Br, COCH3) or a mixture of ferrocene (FcH) and substituted benzenes (PhX; X = H, OH, Br, COCH3). The reactions were carried out by an injection chemical vapour deposition (CVD) method using toluene solutions (carrier gas: 5% H2 in Ar at a flow rate of 100 ml/min) in the temperature range of 800-1000 °C. In most instances multi-walled CNTs (MWCNTs) were produced. Variations in the concentrations of precursor catalysts, the injection rate and temperature affected the type, distribution and dimensions of the SCNMs produced. The overall finding is that the presence of Br and O in these studies significantly reduces CNT growth. A comparative study on the effect of FcPhX versus FcH/PhX mixtures was investigated. The SCNMs were characterized by transmission electron microscopy (TEM), Raman spectroscopy and thermal gravimetric analysis (TGA).  相似文献   

4.
In this work, new results concerning the potential of mixtures based on nitrogen doped titanium dioxide (TiO2:N) and carbon nanotubes (CNTs) as possible catalyst candidates for the rhodamine B (RhB) UV photodegradation are reported. The RhB photodegradation was evaluated by UV–VIS absorption spectroscopy using samples of TiO2:N and CNTs of the type of single-walled carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs), multi-wall carbon nanotubes (MWNTs), and single-walled carbon nanotubes functionalized with carboxyl groups (SWNT-COOH) having various concentrations of CNTs. The best photocatalytic performance was obtained for sample containing TiO2:N and 2.5 wt.% SWNTs-COOH, when approx. 85% of dye removal was achieved after 300 min. of UV irradiation. The reaction kinetics of RhB aqueous solutions containing TiO2:N/CNT mixtures followed a complex first-order kinetic model. The TiO2:N/CNTs catalyst induced higher photodegradation efficiency of RhB than TiO2:N due to the presence of CNTs, which act as adsorbent and dispersing agent and capture the photogenerated electrons of TiO2:N hindering the electron–hole recombination.  相似文献   

5.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The positively charged single walled carbon nanotubes (SWNTs~ ) were prepared by conjugating with-CONH-C_6H_(12)-NH_3~ . The double strand DNA(dsDNA) chains were loaded onto SWNTs~ via the electrostatic interactions.SWNTs~ shows improved loading efficiency (353.5μg/mg) toward dsDNA compared with that of charged free single walled carbon nanotubes (SWNTs) (82.9μg/mg).  相似文献   

7.
Catalyst formation kinetics of a ferrocene‐containing homopolymer, polyferrocenylethylmethylsilane (PFEMS), is investigated as it relates to the catalysis of single walled carbon nanotubes (SWNTs) through a chemical vapor deposition (CVD) process. The formation and efficiency of the PFEMS‐based iron catalyst is compared with that of the corresponding polystyrene (PS)‐b‐PFEMS diblock copolymer. The PFEMS homopolymer contains 23 wt % iron, while PS‐b‐PFEMS, with a 25 vol % PFEMS content, is only 6% iron. Despite its lower iron content, spin‐cast PS‐b‐PFEMS films on SiO2/Si substrates produce more active iron sites than spin‐cast PFEMS films during CVD growth of SWNTs. This is related to the self‐assembly of the block copolymer, where PFEMS domains are well dispersed in the PS matrix, which degrades at a CVD temperature of 920 °C to leave catalytically active elemental iron behind. On the contrary, the pure PFEMS films contain a high percentage of iron and silicon, which tend to transform into ceramic‐coated iron at this high temperature, thus rendering the iron inactive towards SWNT growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 758–765, 2007  相似文献   

8.
We have developed a novel synthetic method that enables us to easily synthesize metal‐capsulated carbon nanotubes (CNTs) in a laboratory by using a combined technology of electrospinning‐metallization and microwave heating. These techniques greatly shorten the time for the synthesis of the CNTs in comparison with the conventional methods. TEM analysis confirmed a successful formation of the CNTs, and the resulting CNTs were multi‐walled and found to be about 25–100 nm in diameters. The products prepared by heating at 600 and 900°C exhibited less‐developed and strongly curved CNTs, whereas the products prepared by heating at 700 and 800°C relatively well‐developed long CNTs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
2‐Azaxanthone, a nitrogenated derivative of the well‐studied organic chromophore xanthone, has been covalently bound through 2‐(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single‐walled carbon nanotubes (CNTs) of 450 nm average length, and the resulting azaxanthylium‐functionalized CNTs (AZX‐CNT, 8.5 wt % AZX content) characterized by solution 1H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of the triplet excited state of AZX (steady‐state and time‐resolved) and of the transient optical spectra of CNTs and AZX‐CNT shows that the covalent linkage boosts the interaction between the azaxanthylium moiety and the short CNT units. The triplet excited state of the azaxanthylium derivative is quenched by CNT with and without covalent bonding, but when it is covalently bonded, the singular transient spectrum is compatible with the photogeneration of electron holes through electron transfer from CNT to excited azaxanthylium units.  相似文献   

10.
Straight and helical carbon nanotubes with diameter from 20 to 60 nm have been synthesized through catalytic decomposition of polyethylene in autoclave at 700 °C. The X-ray power diffraction pattern indicates that the products are hexagonal graphite, and transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images reveal the morphologies and structures of carbon nanotubes. The effects of reaction temperature, catalyst and maleated polypropylene on the growth of the carbon nanotubes were also discussed, and the growth mechanism of the CNTs was proposed. Pyrolysis of polyethylene is a promising green chemical method for economically producing carbon nanotubes.  相似文献   

11.
The paper proposes a simple and portable approach for the surface enhanced Raman scattering (SERS) spectroscopy in situ determination of carboxylated single walled carbon nanotubes (SWNTs) in river water samples. The method is based on the subsequent microfiltration of a bare gold nanoparticles solution and the water sample containing soluble carbon nanotubes by using a home-made filtration device with a small filtration diameter. An acetate cellulose membrane with a pore size of 0.2 μm first traps gold nanoparticles to form the SERS-active substrate and then concentrates the carbon nanotubes. The measured SERS intensity data were closely fit with a Langmuir isotherm. A portable Raman spectrometer was employed to measure SERS spectra, which enables in situ determination of SWNTs in river waters. The limit of detection was 10 μg L−1. The precision, for a 10 mg L−1 concentration of carbon nanotubes, is 1.19% intra-membrane and 10.5% inter-membrane.  相似文献   

12.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

13.
Interest in carbon nanotubes (CNT) has grown at a very rapid rate in the last decade. Their interesting physical and chemical properties open attractive possibilities in many application areas. These properties depend on the process conditions during synthesis and on subsequent purification steps. Recent studies have demonstrated that CNT can promote the electron transfer of biomolecules. These exceptional properties make them attractive for use in electrochemical biosensors. Multi walled nanotubes have been synthesized by the Chemical Vapor Deposition (CVD) method using methane as a carbon source and Ni–Al2O3–SiO2 as the catalyst. The influence of the variation of certain reaction parameters such as feed gas composition, catalyst mass, temperature and reaction time in the yield of the CVD process has been established. In addition, the structural and chemical characteristics of the CNTs have been studied and a purification process to eliminate the catalyst and amorphous carbon has been developed that involves a gaseous oxidative process and acid treatment. The efficiency of the purification step has been determined by analytical techniques. Atomic force microscopy, Raman scattering, thermogravimetric analysis, inductively coupled plasma atomic spectroscopy are the characterization techniques employed in this work.  相似文献   

14.
15.
Pramipexole drug was attached to the surface of multi‐walled carbon nanotubes (MWCNTs) by reaction of acylated carbon nanotubes with pramipexole for the first time. The modified MWCNTs were characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies and CHNS analysis. The prepared pramipexole–MWCNTs were used for immobilization of palladium nanoparticles as a novel nanocatalyst. After characterization of the final nanocomposite, the pramipexole–MWCNTs/Pd was applied as a novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered and recycled five times without any significant loss in activity.  相似文献   

16.
Heavy doping is inevitable for utilizing single‐walled carbon nanotubes for wiring. However, the electrical conductivity of their films is currently as low as one tenth of the films made from typical metal pastes. Herein we report on metal‐comparable electrical conductivity from single‐walled carbon nanotube network films. We use ionic liquids and crown ether complexes for p‐type and n‐type doping, respectively. The encapsulation of counterions into carbon nanotubes promotes the conductivities in the range of 7000 S cm?1, approximately ten times larger than those of undoped films.  相似文献   

17.
Multi‐walled carbon nanotubes (MWNTs) were covalently and non‐covalently functionalized with tetra‐(4‐hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic solution. The morphology of the nanohybrids was observed with transmission electron microscopy. The structure of the product was characterized by FT‐IR, UV‐Vis spectrophotometer, fluorescence spectroscopy and thermogravimetric analysis. The photo‐induced electron‐transfer process of the nanohybrids in organic solution was also revealed.  相似文献   

18.
It is well established that the heterogeneity of carbon nanotubes must be determined before the origin of the electrochemical performance can be attributed. Recently it has been diligently reported that for the case of multiwalled carbon nanotube modified electrodes, copper oxide impurities are responsible for the electrochemical activity facilitating a nonenzymatic sensing strategy towards glucose. We have explored both commercially available multiwalled and single‐walled carbon nanotubes for the sensing of glucose and find that iron oxide impurities remaining from the fabrication process are the electroactive sites facilitating the nonenzymatic detection of glucose. Given that the multiwalled carbon nanotubes in this work are purchased from the same leading supplier as that used recently, discrepancies in the fabrication process exist which clearly has implications in the commercialization of electrochemical sensors based on multiwalled carbon nanotubes.  相似文献   

19.
Multi‐walled carbon nanotubes (MWCNTs) filled with different species of cobalt (metallic cobalt, cobalt oxide) were synthesized by a chemical vapor deposition method through cobaltocene pyrolysis. A systematic study was performed to correlate different experimental conditions with the structure and characteristics of the obtained material. Thin films of Co‐filled CNTs were deposited over conductive substrates through a liquid–liquid interfacial method and were used for cobalt hexacyanoferrate (CoHCFe) electrodeposition by an innovative route in which the Co species encapsulated in the CNTs were employed as reactants. The CNT/CoHCFe films were characterized by different spectroscopic, microscopic, and electrochemical techniques and presented high electrochemical stability in different media. The nanocomposites were applied as both an electrochemical sensor to H2O2 and a cathode for ion batteries and showed limits of detection at approximately 3.7 nmol L ?1 and a capacity of 130 mAh g?1 at a current density of 5 A g?1.  相似文献   

20.
Nanocarbons are synthetic carbon‐rich compounds with polyaromatic frameworks that have lately attracted attention as emerging functional materials. However, their extreme hydrophobicity and aggregation peculiarity, besides their shape and size diversities, precluded their study in solution, especially in “green” water. More convenient and general solubilizing methods of nanocarbon frameworks are required by using non‐covalent supramolecular interactions. Here we report a protocol for solubilizing a wide range of nanocarbons, that is, fullerenes (C60, C70, C84, and C120), polyarenes (tetracene, pentacene, perylene, coronene, and hexabenzocoronene), and carbon nanotubes (single‐walled and multi‐walled CNTs), in water through manual grinding with V‐shaped polyaromatic amphiphiles. The obtained aqueous nanocomposites are composed of nanocarbons encircled by the polyaromatic frameworks of the amphiphiles through multiple aromatic–aromatic interactions. Notably, the encapsulated photosensitive nanocarbons, such as tetracene, pentacene, and fullerene dimer, exhibit unusual stability toward UV/Vis light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号