首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An ICR spectrometer fitted with synchronous photon counting equipment is used to study the emission produced by near-thermal (? 0.1 eV) collisions between He+ and H2O (D2). Within the investigated wavelength region, 185 to 500 nm, the only significant emission features are the A3Π (υ' ? 3) → X3Σ? bands in OH+ and OD+, and the A2Σ+ → X2Π(0.0) band in OH and, possibly, in OD. The corresponding excitation rate constants represent only ? 2% of the total He+/H2O (D2O) charge transfer. The resonant electron-jump model for thermal-energy charge exchange is discussed in the light of recent information on the He+/H2O reaction and on the excited states of H2O+ and their excitation by electron and photon impact on H2O (D2O).  相似文献   

2.
The forward and reverse rate coefficients for the reactions (1) O2H+ + H2 ? H3+ + O2 and (2) O2D+ + D2 ? D3+ + O2 have been determined in a SIFT at 80 and 300 K, from which values of the enthalpy and entropy changes in the reactions have been obtained. The data indicate that the proton affinity of H2 is greater than that of O2 by 0.33 ± 0.04 kcal mole?1; similary, the deuteron affinity of D2 is 0.35 ± 0.04 kcal mole?1 greater than that of O2. The measurements of entropy changes confirm that O2H+ has a triplet electronic ground state.  相似文献   

3.
Ab initio calculated values of fundamental vibrational frequencies and zero-point energies are presented for HTD+, D2T+, T2D+, H2T+, T2H+ and T+3.  相似文献   

4.
An ion-beam apparatus is employed to study the reaction of Ni+ with H2, HD, and D2 as a function of kinetic energy. These reactions lead to the endothermic formation of NiH+, NiH+ and NiD+, and NiD+, respectively. Interpretation of the threshold for these processes yields the average bond energies, D0(Ni+H) = 1.86 ± 0.09 eV and D0(Ni+D) = 1.90 ± 0.14 eV. The total reaction cross sections for all three systems are similar; however, a striking isotope effect is observed for Ni+ reacting with HD. The dependence of the cross sections on relative kinetic energy is discussed in terms of simple models for reaction.  相似文献   

5.
Kinetic energy releases from the unimolecular H2 (D2) elimination reactions of energy-selected Ã2B3gC2H4+(C2D4+) have been obtained by a photoelectron-photoion coincidence technique. The energy releases suggest a 1,1 elimination and are compatible with the presence of a small reverse activation energy barrier of the order of 0.02 eV. Such a barrier was indicated by a detailed ab initio study of this dissociation and the present results are discussed in the light of this theoretical treatment.  相似文献   

6.
Ab initio wavefunctions have been calculated for the complex of Li+ with NH3 and H2O in order to better characterize the nature of the bonding. Hartree—Fock and generalized valence bond calculations were performed using a double zeta basis plus polarization functions. The binding energies obtained at the GVB level are De (Li+ — NH3) = 40.4 kcal/mol and De (Li+ ? H2O) = 37.6 kcal/mol, in reasonable agreement with experimental values. Model calculations indicate that the Li+ ? base bond is basically electrostatic. Small basis sets were found to lead to De as large as 75 kcal/mol for Li+ — NH3, a significant overestimation. Repulsions due to the Li+ core are responsible for keeping the Li+ too far away for significant relaxation effects.  相似文献   

7.
A pulsed ICR cell fitted with synchronous photon counting equipment is used to investigate the emission produced between 185 and 500 nm by near-thermal charge exchange between He+ and C2H2 (C2D2). The emission bands observed are A 2Δ → X2π and (weakly) B2Σ? → X2π in CH(CD) and A 1π → X1Σ in CH+(CD+). Wavelength measurements on the bandheads of the (0,0) and (0,1) bands of CD+ A → X are used to evaluate vibrational constants of CH+(CD+) X1Σ+. The results are (in cm?1): ωe = 2869 ± 27 (2106 ± 20); ωeχe = 65 ± 13 (35 ± 7). These constants are used to calculate Morse-potential Franck—Condon factors and vibrational branching ratios for CH+ and CD+ A → X emission. The spectral distributions and the (relatively low) absolute emission rates produced by He+/C2H2(C2D2) charge exchange are briefly discussed in the light of presently available information on the charge transfer reaction and on the excited states of C2H2?+  相似文献   

8.
Photodissociation of H+2 and D+2 has been observed in a crossed beam experiment. A laser used as photon source. The ion and laser beam cross each other inside the laser cavity. The momentum spectra of the resulting H+ or D+ fragments are recorded with a mass spectrometer. From the spectra the excess kinetic energy is calculated. These values agree with the theoretically expected ones within the experimental error. From the measured intensity distribution the relative population for several vibrational states in the primary ion beam is calculated. Our values deviate from the usual assumed Franck-Condon pattern as well as from the values reported by Dunn. The angular dependence of the fragments is also measured. This dependence indicates a polarization of the primary beam perpendicular to its direction.  相似文献   

9.
Near-thermal charge exchange between He+ and H2(D2O) is used as a source of OH+(OD+) A3Hi→ X3Σ? emission. A comparison between experimental emission branching ratios and those calculated in the r-centroid approximation suggests that the electronic transition moment varies as a function of the r-centroid.  相似文献   

10.
The mobilities of mass-identified H+3 and HeH+ ions in helium and the reaction rate coefficient for HeH+ + H2 → H+3 + He have been measured by a drift-tube quadrupole mass spectrometer at 300 K. The zero-field reduced mobilities of H+3 and HeH+ ions, corrected to 273 K, are 31.0 ± 0.8 and 23.4 ± 0.6 cm2 V?1 s?1 respectively. The reaction rate coefficient was found to be (1.26 + 0.16) × 10?9 cm3s?1 and was observed to be independent of the mean ion kinetic energy in the range from 0.04 to 0.3 eV.  相似文献   

11.
Experimental evidence supporting the “direct” reaction model and the “intermediate complex” model for the reaction CH3+(CH4, H2)C2H5+ are analysed. It is shown that the evidence for the former can equally well be interpreted in terms of a proposed model of persistent complex formation and decay. The plausibility of a “direct” mechanism is discussed and is found to be poor.  相似文献   

12.
Differences between SiH+5 and CH+5 are more significant than the similarities. The proton affinity of SiH4 exceeds than of CH4 by ≈25 kcal/mol. but the heat of hydrogenation of SiH+3 is smaller than that of CH+3 by nearly the same amount. Like CH+5 the C5 structures of SiH+5 are preferred, but SiH+5 is best regarded as a weaker SiH+3—H2 complex. D3h, C2v, and C4v forms are much higher in energy and SiH+5 should not undergo hydrogen scrambling (pseudorotation) readily, as does CH+5 The neutral BH5 is only weakly bound toward loss H2, and the D3h. C2v, and C4v forms are also high in energy. The contral-atom electronegativities, C+ > B > Si+, control this behavior. The electronegativities also determine the ability to bear positive charges. Thermodynamically. SiH+5 and SiH+3 are more stable than CH+5 and CH+3, respectively; hydride transfer occurs from SiH4 to CH+3 and proton transfer from CH+5 to SiH4.  相似文献   

13.
The reaction of Ar+ with H2O has been investigated at near-thermal energy. The product ions H2O+ and ArH+ account for 90 and 10% of the total reaction rate, respectively. Kinetic energy measurements and emission spectroscopy of the H2O+ product ions are reported. It is concluded that at least 60% of H2O+ ions are in the X? state with ≈2.4 eV vibrational energy while up to 40% are in the à state with a mean vibrational energy of 1.4 eV; the à state vibrational distribution has been determined. It is shown that both H2O+ states are populated via an energetically “non-resonant” charge transfer process.  相似文献   

14.
在G3XMP2//B3LYP/6-311+G(3df,2p)水平上对CH3SO3裂解反应的机理进行了研究, 获得了6 条通道(10 条路径), 并构建了其势能剖面. 同时采用单分子反应理论计算了各个通道在温度200-3000 K区间的速率常数. 研究结果表明, 在计算温度范围内, CH3SO3裂解反应的主产物为P1(CH3+SO3), 产物P2(CH3O+SO2)和P3(HCHO+HOSO)仅在温度大于3000 K时对总产物有贡献, 而产物P4(CHSO2+H2O), P5(CH2SO3+H)和P6(CHSO3+H2)贡献相对较少. 将裂解反应总的速率常数拟合为ktotal=1.40×1012T0.15exp(7831.58/T). 此外, 根据统计热力学原理, 预测了所有物种的生成焓(DfHΘ298 K, DfH0 K), 熵(SΘ298 K)和热容(Cp, 298-2000 K), 计算的结果与实验值较接近.  相似文献   

15.
The gas phase emission spectrum of 1, 3, 5-C6Cl3H+3 was obtained in a discharge tube. Vibronic analysis involving correlation of ion fundamental frequencies with those of parent molecules enables a detailed comparison to be made between the vibrational structure of the spectrum of the trichloro-ion and that of 1, 3, 5-C6F3H+3. Analogous Jahn—Teller effects are shown to take place in the ground state of the two ions. The same linear coupling model is used and two possible solutions for D6 and ω6 are obtained by fitting the first two intervals in the 60,0v12 progression in 1, 3, 5-C6Cl 3H+3: (i) D6 = 0.05 - 0.08, ω6 = 455 - 447 cm?1, (ii) D6 = 0.39 - 0.49, ω6 = 399 - 392 cm?1. Arguments based on previously established criteria, and applied here to the case of the 1, 3, 5-C6Cl3H+3 ion are given to select set (ii) as being far more satisfactory in interpreting the experimental data. Fitting to a larger number of bands gave D6 = 0.45, ω6 = 395 cm?1. The Jahn—Teller potential energy barrier EJT6 = 178 cm?1 is about three times greater than in the 1, 3, 5-trifluorobenzene ions, but sufficiently small for the dynamic Jahn—Teller effect to be operative in 1, 3, 5-C6Cl3H+3. Some remarks are made concerning assignments in the excitation spectrum and matrix fluorescence analyses.  相似文献   

16.
A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the two exothermic reactions H2+ (υ)(H2, H)H3+, D2+(υ)(D2, D)D3+, whereby data are evaluated for υ = 0–8 for H2+ and for υ = 0–12 in the case of D2+. The results are analyzed in terms of a modified statistical model designed for reactions that go through a collision complex. It is found that all data can be satisfactorily described within this model.  相似文献   

17.
Oxygen evolution reactions on SrFeO3 were investigated in alkaline and acidic solutions. It was found that the catalytic activity for the oxygen evolution reaction in the alkaline solution is high. The following reaction steps (V)+Fe+2H2O→(O)+FeOH2+2H++2e? in acidic solution and FeOH+OH?→FeO?+H2O in alkaline solution are presumed to be rate-controlling in the anodic evolution of oxygen on SrFeO3 electrode, where (V) denotes oxygen vacancy on the electrode surface. The reaction mechanism and the catalytic property are discussed in connection to the band structure of the oxide.  相似文献   

18.
The rate constant for the formation of H+5 (D+5) at (86 ± 3) °K by the three-body process has been determined (k3(H) = (2.16 ± 0.10) × 10?28 × 10?28 cm6/molecule2 sec and k3(D) = (1.47 ± 0.20) × 10?28 cm6/molecule2 sec) in a high pressure mass spectrometer. Comparison of this result with published rate data at 300 °K indicates the reaction has an apparent activation energy of ?1.5 kcal/mole.  相似文献   

19.
Ab initio SCF and CEPA PNO calculations have been performed together with MINDO/3 calculations on the system C2H+7. In agreement with experimental assignment, but in contradiction to MINDO/3 results, the ab initio methods show the CC protonated structure to be more stable than the CH protonated structure. The energy difference is 8.5 kcal/mol at the SCF level and 6.3 kcal/mol with inclusion of electron correlation. Additionally, ΔH0300 for the reaction C2H+s + H2 = C2H+7 and the proton affinity of ethane are computed.  相似文献   

20.
The process K + H2S/D2S → HS?/DS? + K++ H/D has been investigated for K impact energies from near threshold to ≈100 eV. Positive and negative ion energy spectra have been obtained in the forward direction. The threshold for HS? or DS?production corresponds to the HS?/DS?+ H/D limit of the 2A1 H2S?/D2S? state at 1.55 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号