首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the clamped edge of a thin plate, the interior transverse deflection ω(x 1, x2) of the mid-plane x 3=0 is required to satisfy the boundary conditions ω=?ω/?n=0. But suppose that the plate is not held fixed at the edge but is supported by being bonded to another elastic body; what now are the boundary conditions which should be applied to the interior solution in the plate? For the case in which the plate and its support are in two-dimensional plane strain, we show that the correct boundary conditions for ω must always have the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakqaabeqaaiaabEhacaqGTaWa% aSaaaeaacaGG0aGaae4vamaaCaaaleqabaGaamOqaaaaaOqaaiaaco% dadaqadaqaaiaacgdacqGHsislcaqG2baacaGLOaGaayzkaaaaaiaa% bIgadaahaaWcbeqaaiaackdaaaGcdaWcaaqaaiaabsgadaahaaWcbe% qaaiaackdaaaGccaqG3baabaGaaeizaiaabIhafaqabeGabaaajaaq% baqcLbkacaGGYaaajaaybaqcLbkacaGGXaaaaaaakiabgUcaRmaala% aabaGaaiinaiaabEfadaahaaWcbeqaaiaadAeaaaaakeaacaGGZaWa% aeWaaeaacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGOb% WaaWbaaSqabeaacaGGZaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaa% caGGZaaaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaa% saaiaacodaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0Jaaiimaiaa% cYcaaeaadaWcaaqaaiaabsgacaqG3baabaGaaeizaiaabIhaliaacg% daaaGccqGHsisldaWcaaqaaiaacsdacqqHyoqudaahaaWcbeqaaiaa% bkeaaaaakeaacaGGZaWaaeWaaeaacaGGXaGaeyOeI0IaaeODaaGaay% jkaiaawMcaaaaacaqGObWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGG% YaaaaOGaae4DaaqaaiaabsgacaqG4bqbaeqabiqaaaqcaauaaKqzGc% GaaiOmaaqcaawaaKqzGcGaaiymaaaaaaGccqGHRaWkdaWcaaqaaiaa% csdacqqHyoqudaahaaWcbeqaaiaabAeaaaaakeaacaGGZaWaaeWaae% aacaGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaWba% aSqabeaacaGGYaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaacaGGZa% aaaOGaae4DaaqaaiaabsgacaqG4bqcaaubaeqabiqaaaqcaasaaiaa% codaaKaaafaajugGaiaacgdaaaaaaOGaeyypa0JaaiimaiaacYcaaa% aa!993A!\[\begin{gathered}{\text{w - }}\frac{{4{\text{W}}^B }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4{\text{W}}^F }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^3 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} + \frac{{4\Theta ^{\text{F}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}^2 \frac{{{\text{d}}^3 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}3 \\1 \\\end{array} }} = 0, \hfill \\\end{gathered}\]with exponentially small error as L/h→∞, where 2h is the plate thickness and L is the length scale of ω in the x 1-direction. The four coefficients W B, WF, Θ B , Θ F are computable constants which depend upon the geometry of the support and the elastic properties of the support and the plate, but are independent of the length of the plate and the loading applied to it. The leading terms in these boundary conditions as L/h→∞ (with all elastic moduli remaining fixed) are the same as those for a thin plate with a clamped edge. However by obtaining asymptotic formulae and general inequalities for Θ B , W F, we prove that these constants take large values when the support is ‘soft’ and so may still have a strong influence even when h/L is small. The coefficient W F is also shown to become large as the size of the support becomes large but this effect is unlikely to be significant except for very thick plates. When h/L is small, the first order corrected boundary conditions are w=0,% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaadaWcaaqaaiaabsgacaqG% 3baabaGaaeizaiaabIhaliaacgdaaaGccqGHsisldaWcaaqaaiaacs% dacqqHyoqudaahaaWcbeqaaiaabkeaaaaakeaacaGGZaWaaeWaaeaa% caGGXaGaeyOeI0IaaeODaaGaayjkaiaawMcaaaaacaqGObWaaSaaae% aacaqGKbWaaWbaaSqabeaacaGGYaaaaOGaae4DaaqaaiaabsgacaqG% 4bqbaeqabiqaaaqcaauaaKqzGcGaaiOmaaqcaawaaKqzGcGaaiymaa% aaaaGccqGH9aqpcaGGWaGaaiilaaaa!5DD4!\[\frac{{{\text{dw}}}}{{{\text{dx}}1}} - \frac{{4\Theta ^{\text{B}} }}{{3\left( {1 - {\text{v}}} \right)}}{\text{h}}\frac{{{\text{d}}^2 {\text{w}}}}{{{\text{dx}}\begin{array}{*{20}c}2 \\1 \\\end{array} }} = 0,\]which correspond to a hinged edge with a restoring couple proportional to the angular deflection of the plate at the edge.  相似文献   

2.
We study the regularity and the asymptotic behavior of the solutions of the initial value problem for the porous medium equation $$\begin{gathered} {\text{ }}u_t = \left( {u^m } \right)_{xx} {\text{ in }}Q = \mathbb{R} \times \left( {{\text{0,}}\infty } \right){\text{,}} \hfill \\ u\left( {x{\text{,0}}} \right) = u_{\text{0}} \left( x \right){\text{ for }}x \in \mathbb{R}{\text{,}} \hfill \\ \end{gathered}$$ with m > 1 and, u 0a continuous, nonnegative function. It is well known that, across a moving interface x=ζ(t) of the solution u(x, t), the derivatives v tand v x of the pressure v = (m/(m?1)) u m?1 have jump discontinuities. We prove that each moving part of the interface is a C curve and that v is C on each side of the moving interface (and up to it). We also prove that for solutions with compact support the pressure becomes a concave function of x after a finite time. This fact implies sharp convergence rates for the solution and the interfaces as t→∞.  相似文献   

3.
Yongxin Yuan  Hao Liu 《Meccanica》2013,48(9):2245-2253
The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let M a SR n×n be the analytical mass matrix, and Λ=diag{λ 1,…,λ p }∈C p×p , X=[x 1,…,x p ]∈C n×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $ , $x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $ for j=1,…,l, and λ k R, x k R n for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that M a 2+DXΛ+KX=0. Problem 2: Let D a ,K a SR n×n be the analytical damping and stiffness matrices. Find $(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$ such that $\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$ , where S E is the solution set of Problem 1 and ∥?∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.  相似文献   

4.
We study the statistics of the vertical motion of inertial particles in strongly stratified turbulence. We use Kinematic Simulation (KS) and Rapid Distortion Theory (RDT) to study the mean position and the root mean square (rms) of the position fluctuation in the vertical direction. We vary the strength of the stratification and the particle inertial characteristic time. The stratification is modelled using the Boussinesq equation and solved in the limit of RDT. The validity of the approximations used here requires that $ \sqrt{{L}/{g}} < {2\pi}/{\mathcal{N}} < \tau_{\eta} $ , where τ η is the Kolmogorov time scale, g the gravitational acceleration, L the turbulence integral length scale and $\mathcal{N}$ the Brunt–Väisälä frequency. We introduce a drift Froude number $Fr_{d} = \tau_p g / \mathcal{N} L$ . When Fr d ?<?1, the rms of the inertial particle displacement fluctuation is the same as for fluid elements, i.e. $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 1.22\, u'/\mathcal{N} + \mbox{oscillations}$ . However, when Fr d ?>?1, $\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 267 \, u' \tau_p$ . That is the level of the fluctuation is controlled by the particle inertia τ p and not by the buoyancy frequency $\mathcal{N}$ . In other words it seems possible for inertial particles to retain the vertical capping while loosing the memory of the Brunt–Väisälä frequency.  相似文献   

5.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

6.
Yongxin Yuan  Hao Liu 《Meccanica》2012,47(3):699-706
Finite element model updating is a procedure to minimize the differences between analytical and experimental results and can be mathematically reduced to solving the following problem. Problem P: Let M a SR n×n and K a SR n×n be the analytical mass and stiffness matrices and Λ=diag{λ 1,…,λ p }∈R p×p and X=[x 1,…,x p ]∈R n×p be the measured eigenvalue and eigenvector matrices, respectively. Find \((\hat{M}, \hat{K}) \in \mathcal{S}_{MK}\) such that \(\| \hat{M}-M_{a} \|^{2}+\| \hat{K}-K_{a}\|^{2}= \min_{(M,K) \in {\mathcal{S}}_{MK}} (\| M-M_{a} \|^{2}+\|K-K_{a}\|^{2})\), where \(\mathcal{S}_{MK}=\{(M,K)| X^{T}MX=I_{p}, MX \varLambda=K X \}\) and ∥?∥ is the Frobenius norm. This paper presents an iterative method to solve Problem P. By the method, the optimal approximation solution \((\hat{M}, \hat{K})\) of Problem P can be obtained within finite iteration steps in the absence of roundoff errors by choosing a special kind of initial matrix pair. A numerical example shows that the introduced iterative algorithm is quite efficient.  相似文献   

7.
We prove that the solution semigroup $$S_t \left[ {u_0 ,v_0 } \right] = \left[ {u(t),u_t (t)} \right]$$ generated by the evolutionary problem $$\left\{ P \right\}\left\{ \begin{gathered} u_{tt} + g(u_t ) + Lu + f(u) = 0, t \geqslant 0 \hfill \\ u(0) = u_0 , u_t (0) = \upsilon _0 \hfill \\ \end{gathered} \right.$$ possesses a global attractorA in the energy spaceE o=V×L 2(Ω). Moreover,A is contained in a finite-dimensional inertial setA attracting bounded subsets ofE 1=D(LV exponentially with growing time.  相似文献   

8.
An extension applicable to various k–ε models is proposed to account for the damping of turbulence due to the surface tension. It consists of a sink in the equation for $ {{\overline{D} k} \mathord{\left/ {\vphantom {{\overline{D} k} {\overline{D} t}}} \right. \kern-0em} {\overline{D} t}} $ and a source in the equation for $ {{\overline{D} \varepsilon } \mathord{\left/ {\vphantom {{\overline{D} \varepsilon } {\overline{D} t}}} \right. \kern-0em} {\overline{D} t}} $ both derived from dimensional analysis. First numerical experiments are undertaken with a commercial CFD software. Reasons are given why the tuning of the model should be performed with thermal experiments. The proposed model is practical, since it only needs the programming of source terms. On account of it’s mathematical structure it needs a very small closure coefficient. The intention of this article is to stimulate the numerical turbulence research in a way that is applicable to the engineering practice. A comparison to experimental data is not done here.  相似文献   

9.
Turbulence modifications of a dilute gas-particle flow are experimentally investigated in the lower boundary layer of a horizontal channel by means of a simultaneous two-phase PIV measurement technique. The measurements are conducted in the near-wall region with y +?<?250 at Re τ (based on the wall friction velocity u τ and half channel height h)?=?430. High spatial resolution and small interrogation window are used to minimize the PIV measurement uncertainty due to the velocity gradient near the wall. Polythene beads with the diameter of 60?μm (d p + ?=?1.71, normalized by the fluid kinematic viscosity ν and u τ) are used as dispersed phase, and three low mass loading ratios (Φ m ) ranging from 10?4 to 10?3 are tested. It is found that the addition of the particles noticeably modifies the mean velocity and turbulent intensities of the gas-phase, as well as the turbulence coherent structures, even at Φ m ?=?0.025?%. Particle inertia changes the viscous sublayer of the gas turbulence with a smaller thickness and a larger streamwise velocity gradient, which increases the peak value of the streamwise fluctuation velocity ( $ u_{\text{rms}}^{ + } $ ) of the gas-phase with its location shifting to the wall. Particle sedimentation increases the roughness of the bottom wall, which significantly increases the wall-normal fluctuation velocity ( $ v_{\text{rms}}^{ + } $ ) and Reynolds shear stress ( $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ ) of the gas-phase in the inner region of the boundary layer (y +?<?10). Under effect of particle–wall collision, the Q2 events (ejections) of the gas-phase are slightly increased by particles, while the Q4 events (sweeps) are obviously decreased. The spatial scale of the coherent structures near the wall shrinks remarkably with the presence of the particles, which may be attributed to the intensified crossing-trajectory effects due to particle saltation near the bottom wall. Meanwhile, the $ v_{\text{rms}}^{ + } $ and $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ of the gas-phase are significantly reduced in the outer region of the boundary layer (y +?>?20).  相似文献   

10.
In this paper we study the fully nonlinear free boundary problem $$\left\{\begin{array}{ll}F(D^{2}u) = 1 & {\rm almost \, everywhere \, in}\, B_{1} \cap \Omega\\ |D^{2} u| \leqq K & {\rm almost \, everywhere \, in} \, B_{1} \setminus \Omega,\end{array}\right.$$ where K > 0, and Ω is an unknown open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that W 2,n solutions are locally C 1,1 inside B 1. Under the extra condition that ${\Omega \supset \{D{u} \neq 0 \}}$ and a uniform thickness assumption on the coincidence set {D u = 0}, we also show local regularity for the free boundary ${\partial \Omega \cap B_1}$ .  相似文献   

11.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

12.
The existence of a (unique) solution of the second-order semilinear elliptic equation $$\sum\limits_{i,j = 0}^n {a_{ij} (x)u_{x_i x_j } + f(\nabla u,u,x) = 0}$$ withx=(x 0,x 1,?,x n )?(s 0, ∞)× Ω′, for a bounded domainΩ′, together with the additional conditions $$\begin{array}{*{20}c} {u(x) = 0for(x_1 ,x_2 ,...,x_n ) \in \partial \Omega '} \\ {u(x) = \varphi (x_1 ,x_2 ,...,x_n )forx_0 = s_0 } \\ {|u(x)|globallybounded} \\ \end{array}$$ is shown to be a well-posed problem under some sign and growth restrictions off and its partial derivatives. It can be seen as an initial value problem, with initial value?, in the spaceC 0 0 $(\overline {\Omega '} )$ and satisfying the strong order-preserving property. In the case thata ij andf do not depend onx 0 or are periodic inx 0, it is shown that the corresponding dynamical system has a compact global attractor. Also, conditions onf are given under which all the solutions tend to zero asx 0 tends to infinity. Proofs are strongly based on maximum and comparison techniques.  相似文献   

13.
We obtain theorems of Phragmén-Lindelöf type for the following classes of elliptic partial differential inequalities in an arbitrary unbounded domain \(\Omega \subseteq \mathbb{R}^n ,{\text{ }}n \geqq 2\) (A.1) $$\sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} 9(x)\frac{{\partial u}}{{\partial xj}}} \right)} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where a ij are elliptic in Ω and b i ε L(Ω) and where also a ij are uniformly elliptic and Holder continuous at infinity and b i = O(|x|+1) as x → ∞; (A.2) $${\text{(A}}{\text{.2) }}\sum\limits_{i,j = 1}^n {a_{ij} (x,{\text{ }}u,{\text{ }}\nabla u)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where aijare uniformly elliptic in Ω and b iε L(Ω); and finally (A.3) $${\text{div(}}\nabla u^p \nabla u {\text{)}} \geqq f{\text{(}}u{\text{), }}p > - 1,$$ where the operator on the left is the so-called P-Laplacian. The function f is always supposed positive and continuous. Moreover u is assumed throughout to be in the natural weak Sobolev space corresponding to the particular inequality under consideration, namely u ε. W loc 1,2 (Ω) ∩L loc t8 (Ω) for (A.I), W loc 2,n(Ω) for (A.2), and W loc 1,p+2 (Ω) ∩ L loc t8 (Ω) for (A.3). As a consequence of our results we obtain both non-existence and Liouville theorems, as well as existence theorems for (A.1).  相似文献   

14.
We prove that the problem of solving $$u_t = (u^{m - 1} u_x )_x {\text{ for }} - 1< m \leqq 0$$ with initial conditionu(x, 0)=φ(x) and flux conditions at infinity \(\mathop {\lim }\limits_{x \to \infty } u^{m - 1} u_x = - f(t),\mathop {\lim }\limits_{x \to - \infty } u^{m - 1} u_x = g(t)\) , admits a unique solution \(u \in C^\infty \{ - \infty< x< \infty ,0< t< T\} \) for every φεL1(R), φ≧0, φ≡0 and every pair of nonnegative flux functionsf, g ε L loc [0, ∞) The maximal existence time is given by $$T = \sup \left\{ {t:\smallint \phi (x)dx > \int\limits_0^t {[f} (s) + g(s)]ds} \right\}$$ This mixed problem is ill posed for anym outside the above specified range.  相似文献   

15.
We consider as in Part I a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and?l 3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is any portion of withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements $$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$ where $\gamma _{\alpha \beta }$ (η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder and?(γ 0) is contained in a generatrix ofS. We show that, if the applied body force density isO(? 2) with respect to?, the fieldu(?)=(u i (?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges as?→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts ?1 1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., $$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$ for allη=(η i ) ∈V F (ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$ are the components of the linearized change of curvature tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_\alpha ^\beta$ are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.  相似文献   

16.
We study Lagrangian statistics of the magnitudes of velocity and pressure gradients in isotropic turbulence by quantifying their correlation functions and their characteristic time scales. In a recent work (Yu and Meneveau, Phys Rev Lett 104:084502, 2010), it has been found that the Lagrangian time-correlations of the velocity and pressure gradient tensor and vector elements scale with the locally-defined Kolmogorov time scale, evaluated from the locally-averaged dissipation-rate (? r ) and viscosity (ν) according to $\tau_{K,r}=\sqrt{\nu/\epsilon_r}$ . In this work, we study the Lagrangian time-correlations of the absolute values of velocity and pressure gradients. It has long been known that such correlations display longer memories into the inertial-range as well as possible intermittency effects. We explore the appropriate temporal scales with the aim to achieve collapse of the correlation functions. The data used in this study are sampled from the web-services accessible public turbulence database (http://turbulence.pha.jhu.edu). The database archives a 10244 (space+time) pseudo-spectral direct numerical simulation of forced isotropic turbulence with Taylor-scale Reynolds number Re λ ?=?433, and supports spatial differentiation and spatial/temporal interpolation inside the database. The analysis shows that the temporal auto-correlations of the absolute values extend deep into the inertial range where they are determined not by the local Kolmogorov time-scale but by the local eddy-turnover time scale defined as $\tau_{e,r}= r^{2/3}\epsilon_r^{-1/3}$ . However, considerable scatter remains and appears to be reduced only after a further (intermittency) correction factor of the form of (r/L) χ is introduced, where L is the turbulence integral scale. The exponent χ varies for different variables. The collapse of the correlation functions for absolute values is, however, less satisfactory than the collapse observed for the more rapidly decaying strain-rate tensor element correlation functions in the viscous range.  相似文献   

17.
Theoretical considerations of piezoresistive strain gages show that the change in electrical resistivity depends on the biaxial state of strain at the surface of the specimen to which the gage is bonded. In particular, whenV is the initial voltage across the gage and ( \( \in _{11} , \in _{22} , \in _{12} \) ) is the surface-strain state at the point of attachment, the gage-voltage change ΔV is given by \(\frac{{\Delta V}}{V} = G_{11} \in _{11} + G_{22} \in _{22} + G_{12} \in _{12} \) whereG 11,G 22 andG 12 are the biaxial gage factors. Experiments were conducted on a nominally one-dimensional gage. Kulite type DLP-120-500, bonded to a standard ASTM flat tensile specimen of CR 1018 steel. For this gage, typical values were found to beG 11?26,G 22??1.4 andG 12??1.1. SinceG 22 andG 12 are less than 6 percent ofG 11, it is concluded that contributions from these two factors (called transverse and shear sensitivities) will be significant only when the gage is oriented such that \( \in _{11}<< \left( { \in _{22} , \in _{22} } \right)\) . However, in the interest of completeness and accuracy, all biaxial gage factors should be reported.  相似文献   

18.
We consider the inverse X N and determinant DN(c) of an N×N Toeplitz matrix CN=[ci?j] 0 N?1 as N ar∞. Under the condition that there exists a monotonic decreasing summable bound b n ≧|c n |+|c ?n |, and that the generating function \(c(\theta ) = \sum\limits_{n = - \infty }^\infty {c_n e^{i{\text{ }}n{\text{ }}\theta } }\) does not vanish, we construct a matrix iterative process which yields (i) explicit asymptotic formulae for the elements of XN when v(c) = (2π)?1 [arg{c(2π)}?arg{c(0)}] is zero. Thence we obtain (ii) expressions for the constants, and bounds on the remainder, in the asymptotic formula $$\ln D_N (c) = N{\text{ }}k_0 (c) + E_0 (c) + E_{1,N} (c) + \mathcal{R}_N (c),$$ and (iii) the extension of this formula to the case of general integral v(c). Under certain further conditions the monotonicity of E1,N+?N is proved. We discuss various identities for DN which apply when c(θ) is a rational function of e and mention a conjecture for D N when c(θ) has zeros, and is discontinuous with arbitrary v(c).  相似文献   

19.
For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

20.
Simultaneous heat and mass transfer at horizontal cylinders under free convection conditions have been investigated by an electrochemical method. Over all and local measurements of the mass transfer coefficient have been executed. The over all results can be represented by two empirical equations: $$\begin{gathered} Nu = 0,858 \cdot (Gr \cdot Pr)^{0,22} \hfill \\ Sh = 0,23 \cdot [(Gr' \cdot Sc)^{1,07} + 1,49\sqrt {Sc/Pr} \cdot Gr \cdot Sc]^{0,28} \hfill \\ \end{gathered}$$ The ranges of the dimensionsless groups were as follows:Gr: 7,31 · 102 to 8,69 · 105 Gr′: 1,21 · 103 to 2,79 · 105 Pr: 10 to 7,56Sc: 3440 to 1890  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号