首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
After a brief outline of the concept of configuration-dependent molecular mobility for the particular case of the one-mode mean-configuration theory, a generalized model is introduced in which the dependence of the mobility tensor on the configuration tensor is given by a relaxation-type functional. This model is analysed for steady and transient extensional and shear flows. In extensional flow it predicts a maximum in the steady-state uniaxial viscosity curves and stress overshoot in the stressing curves, and in shear flow it predicts even larger stress overshoot in the stressing curves. This model bridges the gap between the current molecular models and the most elaborate network models. In an appendix it is shown that for the relaxation-type dependence of the mobility it is only by using the upper Oldroyd derivative that physically acceptable results are predicted.  相似文献   

2.
3.
4.
The eigenvalues of the fourth-order constitutive tangent modulus and the corresponding acoustic tensors are analyzed. Explicit expressions of the eigenvalues are made for the nonsymmetric tangent modulus tensor, and in the case of the deviatoric associative rule for the symmetric part of the tangent modulus and its acoustic tensor. In this context, a rate independent infinitesimal elastoplastic model is considered. The expressions of the plastic hardening modulus are summarized for the different local stability criteria (loss of second order work positiveness, loss of ellipticity, and loss of strong ellipticity). The critical hardening modulus and orientation are discussed in detail in the case of loss of ellipticity and loss of strong ellipticity. This analysis is based on the geometric method and linear, isotropic elasticity and deviatoric associative flow rule. In particular, the critical orientation for the loss of strong ellipticity and the classical shear band localization are compared.  相似文献   

5.
6.
7.
A fundamental problem on the constitutive equation with fractional derivatives for the generalized upper convected Maxwell model (UCM) is studied. The existing investigations on the constitutive equation are reviewed and their limitations or deficiencies are highlighted. By utilizing the convected coordinates approach, a mathematically rigorous constitutive equation with fractional derivatives for the generalized UCM model is proposed, which has an explicit expression for the stress tensor. This model can be reduced to the linear generalized Maxwell model with fractional derivatives, the UCM model and some other existing models. In addition, the rheological properties of this proposed model in the start-up of simple shear and elongation flows are investigated. It is shown that this generalized UCM model can describe the various stress evolution processes and the strain hardening effect of the viscoelastic fluids.  相似文献   

8.
Eshelby tensors for an ellipsoidal inclusion in a microstretch material are derived in analytical form, involving only one-dimensional integral. As micropolar Eshelby tensor, the microstretch Eshelby tensors are not uniform inside of the ellipsoidal inclusion. However, different from micropolar Eshelby tensor, it is found that when the size of inclusion is large compared to the characteristic length of microstretch material, the microstretch Eshelby tensor cannot be reduced to the corresponding classical one. The reason for this is analyzed in details. It is found that under a pure hydrostatic loading, the bulk modulus of a microstretch material is not the same as the one in the corresponding classical material. A modified bulk modulus for the microstretch material is proposed, the microstretch Eshelby tensor is shown to be reduced to the modified classical Eshelby tensor at large size limit of inclusion. The fully analytical expressions of microstretch Eshelby tensors for a cylindrical inclusion are also derived.  相似文献   

9.
The viscoelasticity of unentangled polystyrene melts has been investigated in terms of terminals parameters: zero-shear viscosity, steady-state compliance and relaxation spectrum. The Rouse model applies well for molecular weights lower than the average molecular weight between entanglements, providing that one takes into account the proper variations of the radius of gyration. Moreover, local motions at the scale of Kuhn segments have to be considered in order to describe correctly the relaxation modes intermediate between the terminal zone and the glassy plateau. On the other hand, reptation models are commonly used for describing the entangled regime. We propose an expression of the shear modulus which accounts not only for the terminal modes (reptation, tube length fluctuations and tube renewal), but also for the relaxation modes responsible for the plateau zone and the transition of the glassy plateau. A crossover region between the unentangled and untangled regimes is located around . When the molecular weight increases, a shift transfer of Rouse modes towards reptation modes occurs. That leads to a continuity of the expression of the shear modulus over the entire range of molecular weights. Received: 29 December 1997 Accepted: 27 July 1998  相似文献   

10.
Logarithmic strains are increasingly used in constitutive modelling because of their advantageous properties. In this paper we study the physical interpretation of the components of the logarithmic strain tensor in any arbitrary system of representation, which is crucial in formulating meaningful constitutive models. We use the path-independence property of total logarithmic strains to propose different fictitious paths which can be interpreted as a sum of infinitesimal engineering strain tensors. We show that the angular (engineering) distortion measure is arguably not a good measure of shear and instead we propose area distortions which are an exact interpretation of the shear terms both for engineering and for logarithmic strains. This new interpretation clearly explains the maximum obtained in some constitutive models for the simple shear load case.  相似文献   

11.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

12.
The equivalence of the shear compliance tensor obtained via an energy approach and the shear compliance tensor obtained via a geometric/kinematic approach is proven in the context of Saint Venant flexure. Specifically, it is shown that such an equivalence holds, as a general result, for sections of arbitrary geometry when both these tensors are computed on the basis of the long wavelength shear warpage, i.e., of the shear warpage independent from the longitudinal abscissa, provided all long-wavelength terms are included. The equivalence of energetic and kinematic shear factors stems as an immediate consequence of the equivalence of shear compliance tensors. A general analytical proof of this result is provided by analyzing in full detail the 3-dimensional elastostatic solution, inclusive of short-wavelength terminal fields, for a tip loaded cantilever. In particular, the developments reported exploit the objective tensor representations of stress and displacement fields solution to Saint Venant problem recently presented in a companion paper (Serpieri and Rosati, J. Elast., 2013). The well posedness of the concepts of energetic principal shear axes and geometric principal shear axes is shown as a further direct consequence. In particular, principal shear axes are shown to deserve the same legitimacy of principal bending axes both under an energetic and a geometric/kinematic viewpoint.  相似文献   

13.
Most explicit algebraic stress models are formulated for turbulent shear flows without accounting for external body force effects, such as the buoyant force. These models yield fairly good predictions of the turbulence field generated by mean shear. As for thermal turbulence generated by the buoyant force, the models fail to give satisfactory results. The reason is that the models do not explicitly account for buoyancy effects, which interact with the mean shear to enhance or suppress turbulent mixing. Since applicable, coupled differential equations have been developed describing these thermal turbulent fields, it is possible to develop corresponding explicit algebraic stress models using tensor representation theory. While the procedure to be followed has been employed previously, unique challenges arise in extending the procedure for developing the algebraic representations to turbulent buoyant flows. In this paper the development of an explicit algebraic stress model (EASM) is confined to the homogeneous buoyant shear flow case to illustrate the methodology needed to develop the proper polynomial representations. The derivation is based on the implicit formulation of the Reynolds stress anisotropy at buoyant equilibrium. A five-term representation is found to be necessary to account properly for the effect of the thermal field. Thus derived, external buoyancy effects are represented in the scalar coefficients of the basis tensors, and structural buoyancy effects are accounted for in additional terms in the stress anisotropy tensor. These terms will not vanish even in the absence of mean shear. The performance of the new EASM, together with a two-equation (2-Eq) model, the non-buoyant EASM of Gatski and Speziale (1993) and a full second-order model, is assessed against direct numerical simulations of homogeneous, buoyant shear flows at two different Richardson numbers representing weak and strong buoyancy effects. The calculations show that this five-term representation yields better results than the 2-Eq model and the EASM of Gatski and Speziale where buoyancy effects are not explicitly accounted for. Received 5 March 2001 and accepted 15 January 2002  相似文献   

14.
临近空间飞行器因各部件尺寸差异较大, 在高空高马赫数条件下飞行会出现多流区共存的多尺度复杂非平衡流动现象, 流场中的气体分子速度分布函数与当地位置、流场分子速度、气体密度、流动速度、温度、热流矢量、应力张量等相关. 通过分析玻尔兹曼方程的一阶查普曼?恩斯科近似解, 构造了一种同时考虑热流矢量和应力张量影响、满足玻尔兹曼方程高阶碰撞矩的跨流域统一可计算模型方程, 并在数学上分析了其守恒性、H定理等基本属性, 证明了新模型方程与玻尔兹曼方程的相容性, 给出了新模型与现有模型如沙克霍夫(Shakhov)模型等的递进关系, 基于碰撞动力学确定了各流域统一气体分子碰撞松弛参数表达式. 在气体动理论统一算法中采用新建模型及现有模型模拟了一维激波结构、二维近空间飞行环境平板和多体圆柱干扰流动, 并与直接模拟蒙特卡洛方法对比分析, 结果表明在流场中粘性效应显著的区域新建模型能更好地捕捉激波位置, 尤其是在激波内部新模型模拟的宏观参数分布与直接模拟蒙特卡洛方法结果符合更好, 验证了新模型的有效性和可靠性, 同时说明在非平衡显著的流动区域碰撞松弛模型受多参数共同作用的影响.   相似文献   

15.
Stress—strain equations for an isotropic hyperelastic body are formulated. It is shown that the strain energy density whose gradient determines stresses can be defined as a function of two rather than three arguments, namely, strain–tensor invariants. In the case of small strains, the equations become relations of Hooke's law with two material constants, namely, shear modulus and bulk modulus.  相似文献   

16.
It is herein shown that for separable integral constitutive equations with power-law distributions of relaxation times, the streamlines in creeping flow are independent of flow rate.For planar flows of constant stretch history, the stress tensor is the sum of three terms, one proportional to the rate-of-deformation tensor, one to the square of this tensor, and the other to the Jaumann derivative of the rate-of-deformation tensor. The three tensors are the same as occur in the Criminale-Ericksen-Filbey Equation, but the coefficients of these tensors depend not only on the second invariant of the strain rate, but also on another invariant which is a measure of flow strength. With the power-law distribution of relaxation times, each coefficient is equal to the second invariant of the strain rate tensor raised to a power, times a function that depends only on strength of the flow. Axisymmetric flows of constant stretch history are more complicated than the planar flows, because three instead of two nonzero normal components appear in the velocity gradient tensor. For homogeneous axisymmetric flows of constant stretch history, the stress tensor is given by the sum of the same three terms. The coefficients of these terms again depend on the flow strength parameter, but in general the dependences are not the same as in planar flow.  相似文献   

17.
在大变形弹塑性本构理论中,一个基本的问题是弹性变形和塑性变形的分解.通常采用两种分解方式,一是将变形率(或应变率)加法分解为弹性和塑性两部分,其中,弹性变形率与Kirchhoff应力的客观率通过弹性张量联系起来构成所谓的次弹性模型,而塑性变形率与Kirchhoff应力使用流动法则建立联系;另一种是基于中间构形将变形梯度进行乘法分解,它假定通过虚拟的卸载过程得到一个无应力的中间构形,建立所谓超弹性-塑性模型.研究了基于变形梯度乘法分解并且基于中间构形的大变形弹塑性模型所具有的若干性质,包括:在不同的构形上,塑性旋率的存在性、背应力的对称性、塑性变形率与屈服面的正交性以及它们之间的关系.首先,使用张量函数表示理论,建立了各向同性函数的若干特殊性质,并导出了张量的张量值函数在中间构形到当前构形之间进行前推后拉的简单关系式.然后,基于这些特殊性质和关系式,从热力学定律出发,建立模型在不同构形上的数学表达,包括客观率表示的率形式和连续切向刚度等,从而获得模型所具有的若干性质.最后,将模型与4种其他模型进行了比较分析.   相似文献   

18.
剪切模量在非晶合金黏性流动、扩散及结构弛豫等行为中起着重要作用. 宏观剪切弹性决定非晶合金热流变化.探索非晶合金在结构弛豫和玻璃转变过程中宏观力学性能与热流的关联有助于理解其力学行为起源. 本研究基于自间隙理论对Cu$_{49}$Hf$_{42}$Al$_{9}$非晶合金热流、剪切模量及黏度进行研究,建立剪切模量与热流之间的关联. 通过测量剪切模量精确测定自间隙缺陷浓度演化规律.从能量角度出发,通过激活能图谱探索自间隙缺陷浓度对非晶合金热力学性能的影响. 借助于动态力学分析仪研究非晶合金从室温到过冷液相区的动态弛豫行为,探索物理时效引起的结构弛豫以及内耗演化规律. 研究结果表明,自间隙理论可准确描述非晶合金的弛豫动力学、剪切软化及结构弛豫诱导的力学行为. 结合热流数据可以很好描述铸态和弛豫态非晶合金剪切模量随温度演化过程,激活能图谱直观表述了单位激活能可激活的自间隙缺陷浓度. 自间隙缺陷在结构弛豫中湮灭,表现为玻璃体系结构向更稳定状态迁移.在玻璃化转变过程中,缺陷浓度显著升高伴随热吸收,表现为原子大规模协同运动和剪切软化. 物理时效诱导非晶合金内耗和原子移动性降低. 过冷液相区内原子移动性高至消除了结构弛豫影响.  相似文献   

19.
加权残值法在钢筋混凝土拱桥非线性有限元分析中的应用   总被引:2,自引:0,他引:2  
本文用圆弧梁离散拱肋;用圆柱拖带坐标、三次位移插值函数及平截面假定来描述单元位形;用加权残值配点法来消除曲梁单元的剪力与膜力闭锁。按基于连续介质力学的U.L.列式建立单元增量平衡方程,以考虑几何非线性。假定钢筋为理想弹塑性材料。按三参数各向同性强化塑性模型,建立混凝土的弹塑性本构矩阵。将拱单元分段分块,根据钢筋及砼的本构特性,建立拱单元及梁段单元的弹塑性刚度矩阵,以考虑材料非线性。用编制的程序对两座模型拱桥进行计算,计算结果与模型测试结果接近  相似文献   

20.
剪切模量在非晶合金黏性流动、扩散及结构弛豫等行为中起着重要作用. 宏观剪切弹性决定非晶合金热流变化.探索非晶合金在结构弛豫和玻璃转变过程中宏观力学性能与热流的关联有助于理解其力学行为起源. 本研究基于自间隙理论对Cu$_{49}$Hf$_{42}$Al$_{9}$非晶合金热流、剪切模量及黏度进行研究,建立剪切模量与热流之间的关联. 通过测量剪切模量精确测定自间隙缺陷浓度演化规律.从能量角度出发,通过激活能图谱探索自间隙缺陷浓度对非晶合金热力学性能的影响. 借助于动态力学分析仪研究非晶合金从室温到过冷液相区的动态弛豫行为,探索物理时效引起的结构弛豫以及内耗演化规律. 研究结果表明,自间隙理论可准确描述非晶合金的弛豫动力学、剪切软化及结构弛豫诱导的力学行为. 结合热流数据可以很好描述铸态和弛豫态非晶合金剪切模量随温度演化过程,激活能图谱直观表述了单位激活能可激活的自间隙缺陷浓度. 自间隙缺陷在结构弛豫中湮灭,表现为玻璃体系结构向更稳定状态迁移.在玻璃化转变过程中,缺陷浓度显著升高伴随热吸收,表现为原子大规模协同运动和剪切软化. 物理时效诱导非晶合金内耗和原子移动性降低. 过冷液相区内原子移动性高至消除了结构弛豫影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号